
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Early Praise for The Definitive ANTLR 4 Reference

Parr’s clear writing and lighthearted style make it a pleasure to learn the practical
details of building language processors.

➤ Dan Bornstein
Designer of the Dalvik VM for Android

ANTLR is an exceptionally powerful and flexible tool for parsing formal languages.
At Twitter, we use it exclusively for query parsing in our search engine. Our
grammars are clean and concise, and the generated code is efficient and stable.
This book is our go-to reference for ANTLR v4—engaging writing, clear descriptions,
and practical examples all in one place.

➤ Samuel Luckenbill
Senior manager of search infrastructure, Twitter, Inc.

ANTLR v4 really makes parsing easy, and this book makes it even easier. It explains
every step of the process, from designing the grammar to making use of the output.

➤ Niko Matsakis
Core contributor to the Rust language and researcher at Mozilla Research

I sure wish I had ANTLR 4 and this book four years ago when I started to work
on a C++ grammar in the NetBeans IDE and the Sun Studio IDE. Excellent content
and very readable.

➤ Nikolay Krasilnikov
Senior software engineer, Oracle Corp.

www.it-ebooks.info

http://www.it-ebooks.info/

This book is an absolute requirement for getting the most out of ANTLR. I refer
to it constantly whenever I’m editing a grammar.

➤ Rich Unger
Principal member of technical staff, Apex Code team, Salesforce.com

I have been using ANTLR to create languages for six years now, and the new v4
is absolutely wonderful. The best news is that Terence has written this fantastic
book to accompany the software. It will please newbies and experts alike. If you
process data or implement languages, do yourself a favor and buy this book!

➤ Rahul Gidwani
Senior software engineer, Xoom Corp.

Never have the complexities surrounding parsing been so simply explained. This
book provides brilliant insight into the ANTLR v4 software, with clear explanations
from installation to advanced usage. An array of real-life examples, such as JSON
and R, make this book a must-have for any ANTLR user.

➤ David Morgan
Student, computer and electronic systems, University of Strathclyde

www.it-ebooks.info

http://www.it-ebooks.info/

The Definitive ANTLR 4
Reference

Terence Parr

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Cover image by BabelStone (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licens-
es/by-sa/3.0)], via Wikimedia Commons:
http://commons.wikimedia.org/wiki/File%3AShang_dynasty_inscribed_scapula.jpg

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-699-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2013

www.it-ebooks.info

http://pragprog.com
http://commons.wikimedia.org/wiki/File%3AShang_dynasty_inscribed_scapula.jpg
http://www.it-ebooks.info/

Contents

Acknowledgments ix

Welcome Aboard! xi

Part I — Introducing ANTLR
and Computer Languages

1. Meet ANTLR 3
1.1 Installing ANTLR 3
1.2 Executing ANTLR and Testing Recognizers 6

2. The Big Picture 9
Let’s Get Meta! 92.1

2.2 Implementing Parsers 11
2.3 You Can’t Put Too Much Water into a Nuclear Reactor 13
2.4 Building Language Applications Using Parse Trees 16
2.5 Parse-Tree Listeners and Visitors 17

3. A Starter ANTLR Project 21
The ANTLR Tool, Runtime, and Generated Code 223.1

3.2 Testing the Generated Parser 24
3.3 Integrating a Generated Parser into a Java Program 26
3.4 Building a Language Application 27

4. A Quick Tour 31
Matching an Arithmetic Expression Language 324.1

4.2 Building a Calculator Using a Visitor 38
4.3 Building a Translator with a Listener 42
4.4 Making Things Happen During the Parse 46
4.5 Cool Lexical Features 50

www.it-ebooks.info

http://www.it-ebooks.info/

Part II — Developing Language Applications
with ANTLR Grammars

5. Designing Grammars 57
Deriving Grammars from Language Samples 585.1

5.2 Using Existing Grammars as a Guide 60
5.3 Recognizing Common Language Patterns with ANTLR

Grammars 61
5.4 Dealing with Precedence, Left Recursion, and

Associativity 69
5.5 Recognizing Common Lexical Structures 72
5.6 Drawing the Line Between Lexer and Parser 79

6. Exploring Some Real Grammars 83
Parsing Comma-Separated Values 846.1

6.2 Parsing JSON 86
6.3 Parsing DOT 93
6.4 Parsing Cymbol 98
6.5 Parsing R 102

7. Decoupling Grammars from Application-Specific Code . . 109
Evolving from Embedded Actions to Listeners 1107.1

7.2 Implementing Applications with Parse-Tree Listeners 112
7.3 Implementing Applications with Visitors 115
7.4 Labeling Rule Alternatives for Precise Event Methods 117
7.5 Sharing Information Among Event Methods 119

8. Building Some Real Language Applications 127
Loading CSV Data 1278.1

8.2 Translating JSON to XML 130
8.3 Generating a Call Graph 134
8.4 Validating Program Symbol Usage 138

Part III — Advanced Topics

9. Error Reporting and Recovery 149
A Parade of Errors 1499.1

9.2 Altering and Redirecting ANTLR Error Messages 153
9.3 Automatic Error Recovery Strategy 158

Contents • vi

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Error Alternatives 170
9.5 Altering ANTLR’s Error Handling Strategy 171

10. Attributes and Actions 175
10.1 Building a Calculator with Grammar Actions 176
10.2 Accessing Token and Rule Attributes 182
10.3 Recognizing Languages Whose Keywords Aren’t Fixed 185

11. Altering the Parse with Semantic Predicates 189
11.1 Recognizing Multiple Language Dialects 190
11.2 Deactivating Tokens 193
11.3 Recognizing Ambiguous Phrases 196

12. Wielding Lexical Black Magic 203
Broadcasting Tokens on Different Channels 20412.1

12.2 Context-Sensitive Lexical Problems 208
12.3 Islands in the Stream 219
12.4 Parsing and Lexing XML 224

Part IV — ANTLR Reference

13. Exploring the Runtime API 235
Library Package Overview 23513.1

13.2 Recognizers 236
13.3 Input Streams of Characters and Tokens 238
13.4 Tokens and Token Factories 239
13.5 Parse Trees 241
13.6 Error Listeners and Strategies 242
13.7 Maximizing Parser Speed 243
13.8 Unbuffered Character and Token Streams 243
13.9 Altering ANTLR’s Code Generation 246

14. Removing Direct Left Recursion 247
14.1 Direct Left-Recursive Alternative Patterns 248
14.2 Left-Recursive Rule Transformations 249

15. Grammar Reference 253
Grammar Lexicon 25315.1

15.2 Grammar Structure 256
15.3 Parser Rules 261
15.4 Actions and Attributes 271
15.5 Lexer Rules 277

Contents • vii

www.it-ebooks.info

http://www.it-ebooks.info/

15.6 Wildcard Operator and Nongreedy Subrules 283
15.7 Semantic Predicates 286
15.8 Options 292
15.9 ANTLR Tool Command-Line Options 294

A1. Bibliography 299

Index 301

Contents • viii

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
It’s been roughly 25 years since I started working on ANTLR. In that time,
many people have helped shape the tool syntax and functionality, for which
I’m most grateful. Most importantly for ANTLR version 4, Sam Harwell1 was
my coauthor. He helped write the software but also made critical contributions
to the Adaptive LL(*) grammar analysis algorithm. Sam is also building the
ANTLRWorks2 grammar IDE.

The following people provided technical reviews: Oliver Ziegermann, Sam
Rose, Kyle Ferrio, Maik Schmidt, Colin Yates, Ian Dees, Tim Ottinger, Kevin
Gisi, Charley Stran, Jerry Kuch, Aaron Kalair, Michael Bevilacqua-Linn, Javier
Collado, Stephen Wolff, and Bernard Kaiflin. I also appreciate those people
who reported errors in beta versions of the book and v4 software. Kim Shrier
and Graham Wideman deserve special attention because they provided such
detailed reviews. Graham’s technical reviews were so elaborate, voluminous,
and extensive that I wasn’t sure whether to shake his hand vigorously or go
buy a handgun.

Finally, I’d like to thank Pragmatic Bookshelf editor Susannah Davidson
Pfalzer, who has stuck with me through three books! Her suggestions and
careful editing really improved this book.

1. http://tunnelvisionlabs.com

report erratum • discusswww.it-ebooks.info

http://tunnelvisionlabs.com
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Welcome Aboard!
ANTLR v4 is a powerful parser generator that you can use to read, process,
execute, or translate structured text or binary files. It’s widely used in
academia and industry to build all sorts of languages, tools, and frameworks.
Twitter search uses ANTLR for query parsing, with more than 2 billion queries
a day. The languages for Hive and Pig and the data warehouse and analysis
systems for Hadoop all use ANTLR. Lex Machina1 uses ANTLR for information
extraction from legal texts. Oracle uses ANTLR within the SQL Developer IDE
and its migration tools. The NetBeans IDE parses C++ with ANTLR. The HQL
language in the Hibernate object-relational mapping framework is built with
ANTLR.

Aside from these big-name, high-profile projects, you can build all sorts of
useful tools such as configuration file readers, legacy code converters, wiki
markup renderers, and JSON parsers. I’ve built little tools for creating object-
relational database mappings, describing 3D visualizations, and injecting
profiling code into Java source code, and I’ve even done a simple DNA pattern
matching example for a lecture.

From a formal language description called a grammar, ANTLR generates a
parser for that language that can automatically build parse trees, which are
data structures representing how a grammar matches the input. ANTLR also
automatically generates tree walkers that you can use to visit the nodes of
those trees to execute application-specific code.

This book is both a reference for ANTLR v4 and a guide to using it to solve
language recognition problems. You’re going to learn how to do the following:

• Identify grammar patterns in language samples and reference manuals
in order to build your own grammars.

1. http://lexmachina.com

report erratum • discusswww.it-ebooks.info

http://lexmachina.com
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

• Build grammars for simple languages like JSON all the way up to complex
programming languages like R. You’ll also solve some tricky recognition
problems from Python and XML.

• Implement language applications based upon those grammars by walking
the automatically generated parse trees.

• Customize recognition error handling and error reporting for specific
application domains.

• Take absolute control over parsing by embedding Java actions into a
grammar.

Unlike a textbook, the discussions are example-driven in order to make things
more concrete and to provide starter kits for building your own language
applications.

Who Is This Book For?

This book is specifically targeted at any programmer interested in learning
how to build data readers, language interpreters, and translators. This book
is about how to build things with ANTLR specifically, of course, but you’ll
learn a lot about lexers and parsers in general. Beginners and experts alike
will need this book to use ANTLR v4 effectively. To get your head around the
advanced topics in Part III, you’ll need some experience with ANTLR by
working through the earlier chapters. Readers should know Java to get the
most out of the book.

The Honey Badger Release

ANTLR v4 is named the “Honey Badger” release after the fearless hero of the YouTube
sensation The Crazy Nastyass Honey Badger.a It takes whatever grammar you give
it; it doesn’t give a damn!

a. http://www.youtube.com/watch?v=4r7wHMg5Yjg

What’s So Cool About ANTLR V4?

The v4 release of ANTLR has some important new capabilities that reduce
the learning curve and make developing grammars and language applications
much easier. The most important new feature is that ANTLR v4 gladly accepts
every grammar you give it (with one exception regarding indirect left recursion,
described shortly). There are no grammar conflict or ambiguity warnings as
ANTLR translates your grammar to executable, human-readable parsing code.

Welcome Aboard! • xii

report erratum • discusswww.it-ebooks.info

http://www.youtube.com/watch?v=4r7wHMg5Yjg
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

If you give your ANTLR-generated parser valid input, the parser will always
recognize the input properly, no matter how complicated the grammar. Of
course, it’s up to you to make sure the grammar accurately describes the
language in question.

ANTLR parsers use a new parsing technology called Adaptive LL(*) or ALL(*)
(“all star”) that I developed with Sam Harwell.2 ALL(*) is an extension to v3’s
LL(*) that performs grammar analysis dynamically at runtime rather than
statically, before the generated parser executes. Because ALL(*) parsers have
access to actual input sequences, they can always figure out how to recognize
the sequences by appropriately weaving through the grammar. Static analysis,
on the other hand, has to consider all possible (infinitely long) input sequences.

In practice, having ALL(*) means you don’t have to contort your grammars to
fit the underlying parsing strategy as you would with most other parser gen-
erator tools, including ANTLR v3. If you’ve ever pulled your hair out because
of an ambiguity warning in ANTLR v3 or a reduce/reduce conflict in yacc,
ANTLR v4 is for you!

The next awesome new feature is that ANTLR v4 dramatically simplifies the
grammar rules used to match syntactic structures like programming language
arithmetic expressions. Expressions have always been a hassle to specify
with ANTLR grammars (and to recognize by hand with recursive-descent
parsers). The most natural grammar to recognize expressions is invalid for
traditional top-down parser generators like ANTLR v3. Now, with v4, you can
match expressions with rules that look like this:

expr : expr '*' expr // match subexpressions joined with '*' operator
| expr '+' expr // match subexpressions joined with '+' operator
| INT // matches simple integer atom
;

Self-referential rules like expr are recursive and, in particular, left recursive
because at least one of its alternatives immediately refers to itself.

ANTLR v4 automatically rewrites left-recursive rules such as expr into non-
left-recursive equivalents. The only constraint is that the left recursion must
be direct, where rules immediately reference themselves. Rules cannot refer-
ence another rule on the left side of an alternative that eventually comes back
to reference the original rule without matching a token. See Section 5.4,
Dealing with Precedence, Left Recursion, and Associativity, on page 69 for
more details.

2. http://tunnelvisionlabs.com

report erratum • discuss

What’s So Cool About ANTLR V4? • xiii

www.it-ebooks.info

http://tunnelvisionlabs.com
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

In addition to those two grammar-related improvements, ANTLR v4 makes it
much easier to build language applications. ANTLR-generated parsers auto-
matically build convenient representations of the input called parse trees that
an application can walk to trigger code snippets as it encounters constructs
of interest. Previously, v3 users had to augment the grammar with tree con-
struction operations. In addition to building trees automatically, ANTLR v4
also automatically generates parse-tree walkers in the form of listener and
visitor pattern implementations. Listeners are analogous to XML document
handler objects that respond to SAX events triggered by XML parsers.

ANTLR v4 is much easier to learn because of those awesome new features
but also because of what it does not carry forward from v3.

• The biggest change is that v4 deemphasizes embedding actions (code) in
the grammar, favoring listeners and visitors instead. The new mechanisms
decouple grammars from application code, nicely encapsulating an
application instead of fracturing it and dispersing the pieces across a
grammar. Without embedded actions, you can also reuse the same
grammar in different applications without even recompiling the generated
parser. ANTLR still allows embedded actions, but doing so is considered
advanced in v4. Such actions give the highest level of control but at the
cost of losing grammar reuse.

• Because ANTLR automatically generates parse trees and tree walkers,
there’s no need for you to build tree grammars in v4. You get to use
familiar design patterns like the visitor instead. This means that once
you’ve learned ANTLR grammar syntax, you get to move back into the
comfortable and familiar realm of the Java programming language to
implement the actual language application.

• ANTLR v3’s LL(*) parsing strategy is weaker than v4’s ALL(*), so v3 some-
times relied on backtracking to properly parse input phrases. Backtracking
makes it hard to debug a grammar by stepping through the generated
parser because the parser might parse the same input multiple times
(recursively). Backtracking can also make it harder for the parser to give
a good error message upon invalid input.

ANTLR v4 is the result of a minor detour (twenty-five years) I took in graduate
school. I guess I’m going to have to change my motto slightly.

Why program by hand in five days what you can spend twenty-five years of your
life automating?

Welcome Aboard! • xiv

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR v4 is exactly what I want in a parser generator, so I can finally get
back to the problem I was originally trying to solve in the 1980s. Now, if I
could just remember what that was.

What’s in This Book?

This book is the best, most complete source of information on ANTLR v4 that
you’ll find anywhere. The free, online documentation provides enough to learn
the basic grammar syntax and semantics but doesn’t explain ANTLR concepts
in detail. Only this book explains how to identify grammar patterns in lan-
guages and how to express them as ANTLR grammars. The examples woven
throughout the text give you the leg up you need to start building your own
language applications. This book helps you get the most out of ANTLR and
is required reading to become an advanced user.

This book is organized into four parts.

• Part I introduces ANTLR, provides some background knowledge about
languages, and gives you a tour of ANTLR’s capabilities. You’ll get a taste
of the syntax and what you can do with it.

• Part II is all about designing grammars and building language applications
using those grammars in combination with tree walkers.

• Part III starts out by showing you how to customize the error handling of
ANTLR-generated parsers. Next, you’ll learn how to embed actions in the
grammar because sometimes it’s simpler or more efficient to do so than
building a tree and walking it. Related to actions, you’ll also learn how to
use semantic predicates to alter the behavior of the parser to handle some
challenging recognition problems.

The final chapter solves some challenging language recognition problems,
such as recognizing XML and context-sensitive newlines in Python.

• Part IV is the reference section and lays out all of the rules for using the
ANTLR grammar meta-language and its runtime library.

Readers who are totally new to grammars and language tools should definitely
start by reading Chapter 1, Meet ANTLR, on page 3 and Chapter 2, The Big
Picture, on page 9. Experienced ANTLR v3 users can jump directly to Chapter
4, A Quick Tour, on page 31 to learn more about v4’s new capabilities.

The source code for all examples in this book is available online. For those
of you reading this electronically, you can click the box above the source code,
and it will display the code in a browser window. If you’re reading the paper
version of this book or would simply like a complete bundle of the code, you

report erratum • discuss

What’s in This Book? • xv

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

can grab it at the book website.3 To focus on the key elements being discussed,
most of the code snippets shown in the book itself are partial. The downloads
show the full source.

Also be aware that all files have a copyright notice as a comment at the top,
which kind of messes up the sample input files. Please remove the copyright
notice from files, such as t.properties in the listeners code subdirectory, before
using them as input to the parsers described in this book. Readers of the
electronic version can also cut and paste from the book, which does not display
the copyright notice, as shown here:

listeners/t.properties
user="parrt"
machine="maniac"

Learning More About ANTLR Online

At the http://www.antlr.org website, you’ll find the ANTLR download, the ANTLR-
Works2 graphical user interface (GUI) development environment, documenta-
tion, prebuilt grammars, examples, articles, and a file-sharing area. The tech
support mailing list4 is a newbie-friendly public Google group.

Terence Parr

University of San Francisco, November 2012

3. http://pragprog.com/titles/tpantlr2/source_code
4. https://groups.google.com/d/forum/antlr-discussion

Welcome Aboard! • xvi

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/t.properties
http://www.antlr.org
http://pragprog.com/titles/tpantlr2/source_code
https://groups.google.com/d/forum/antlr-discussion
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Part I

Introducing ANTLR
and Computer Languages

In Part I, we’ll get ANTLR installed, try it on a sim-
ple “hello world” grammar, and look at the big
picture of language application development. With
those basics down, we’ll build a grammar to recog-
nize and translate lists of integers in curly braces
like {1, 2, 3}. Finally, we’ll take a whirlwind tour of
ANTLR features by racing through a number of
simple grammars and applications.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Meet ANTLR
Our goals in this first part of the book are to get a general overview of ANTLR’s
capabilities and to explore language application architecture. Once we have
the big picture, we’ll learn ANTLR slowly and systematically in Part II using
lots of real-world examples. To get started, let’s install ANTLR and then try
it on a simple “hello world” grammar.

1.1 Installing ANTLR

ANTLR is written in Java, so you need to have Java installed before you begin.1

This is true even if you’re going to use ANTLR to generate parsers in another
language such as C# or C++. (I expect to have other targets in the near future.)
ANTLR requires Java version 1.6 or newer.

Why This Book Uses the Command-Line Shell

Throughout this book, we’ll be using the command line (shell) to run ANTLR and
build our applications. Since programmers use a variety of development environments
and operating systems, the operating system shell is the only “interface” we have in
common. Using the shell also makes each step in the language application develop-
ment and build process explicit. I’ll be using the Mac OS X shell throughout for con-
sistency, but the commands should work in any Unix shell and, with trivial variations,
on Windows.

Installing ANTLR itself is a matter of downloading the latest jar, such as antlr-
4.0-complete.jar,2 and storing it somewhere appropriate. The jar contains all
dependencies necessary to run the ANTLR tool and the runtime library

1. http://www.java.com/en/download/help/download_options.xml
2. See http://www.antlr.org/download.html, but you can also build ANTLR from the source by

pulling from https://github.com/antlr/antlr4.

report erratum • discusswww.it-ebooks.info

http://www.java.com/en/download/help/download_options.xml
http://www.antlr.org/download.html
https://github.com/antlr/antlr4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

needed to compile and execute recognizers generated by ANTLR. In a nutshell,
the ANTLR tool converts grammars into programs that recognize sentences
in the language described by the grammar. For example, given a grammar
for JSON, the ANTLR tool generates a program that recognizes JSON input
using some support classes from the ANTLR runtime library.

The jar also contains two support libraries: a sophisticated tree layout library3

and StringTemplate,4 a template engine useful for generating code and other
structured text (see the sidebar The StringTemplate Engine, on page 4). At version
4.0, ANTLR is still written in ANTLR v3, so the complete jar contains the previous
version of ANTLR as well.

The StringTemplate Engine

StringTemplate is a Java template engine (with ports for C#, Python, Ruby, and Scala)
for generating source code, web pages, emails, or any other formatted text output.
StringTemplate is particularly good at multitargeted code generators, multiple site skins,
and internationalization/localization. It evolved over years of effort developing jGuru.com.
StringTemplate also generates that website and powers the ANTLR v3 and v4 code gener-
ators. See the Abouta page on the website for more information.

a. http://www.stringtemplate.org/about.html

You can manually download ANTLR from the ANTLR website using a web
browser, or you can use the command-line tool curl to grab it.

$ cd /usr/local/lib
$ curl -O http://www.antlr.org/download/antlr-4.0-complete.jar

On Unix, /usr/local/lib is a good directory to store jars like ANTLR’s. On Windows,
there doesn’t seem to be a standard directory, so you can simply store it in your
project directory. Most development environments want you to drop the jar into
the dependency list of your language application project. There is no configuration
script or configuration file to alter—you just need to make sure that Java knows
how to find the jar.

Because this book uses the command line throughout, you need to go through
the typical onerous process of setting the CLASSPATH5 environment variable. With
CLASSPATH set, Java can find both the ANTLR tool and the runtime library. On Unix
systems, you can execute the following from the shell or add it to the shell start-
up script (.bash_profile for bash shell):

3. http://code.google.com/p/treelayout
4. http://www.stringtemplate.org
5. http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

Chapter 1. Meet ANTLR • 4

report erratum • discusswww.it-ebooks.info

http://www.stringtemplate.org/about.html
http://code.google.com/p/treelayout
http://www.stringtemplate.org
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ export CLASSPATH=".:/usr/local/lib/antlr-4.0-complete.jar:$CLASSPATH"

It’s critical to have the dot, the current directory identifier, somewhere in the
CLASSPATH. Without that, the Java compiler and Java virtual machine won’t
see classes in the current directory. You’ll be compiling and testing things
from the current directory all the time in this book.

You can check to see that ANTLR is installed correctly now by running the
ANTLR tool without arguments. You can either reference the jar directly with
the java -jar option or directly invoke the org.antlr.v4.Tool class.

$ java -jar /usr/local/lib/antlr-4.0-complete.jar # launch org.antlr.v4.Tool
ANTLR Parser Generator Version 4.0
-o ___ specify output directory where all output is generated
-lib ___ specify location of .tokens files

...
$ java org.antlr.v4.Tool # launch org.antlr.v4.Tool
ANTLR Parser Generator Version 4.0
-o ___ specify output directory where all output is generated
-lib ___ specify location of .tokens files
...

Typing either of those java commands to run ANTLR all the time would be
painful, so it’s best to make an alias or shell script. Throughout the book, I’ll
use alias antlr4, which you can define as follows on Unix:

$ alias antlr4='java -jar /usr/local/lib/antlr-4.0-complete.jar'

Or, you could put the following script into /usr/local/bin (readers of the ebook
can click the install/antlr4 title bar to get the file):

install/antlr4
#!/bin/sh
java -cp "/usr/local/lib/antlr4-complete.jar:$CLASSPATH" org.antlr.v4.Tool $*

On Windows you can do something like this (assuming you put the jar in
C:\libraries):

install/antlr4.bat
java -cp C:\libraries\antlr-4.0-complete.jar;%CLASSPATH% org.antlr.v4.Tool %*

Either way, you get to say just antlr4.

$ antlr4
ANTLR Parser Generator Version 4.0
-o ___ specify output directory where all output is generated
-lib ___ specify location of .tokens files
...

If you see the help message, then you’re ready to give ANTLR a quick test-
drive!

report erratum • discuss

Installing ANTLR • 5

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/install/antlr4
http://media.pragprog.com/titles/tpantlr2/code/install/antlr4.bat
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

1.2 Executing ANTLR and Testing Recognizers

Here’s a simple grammar that recognizes phrases like hello parrt and hello world:

install/Hello.g4
grammar Hello; // Define a grammar called Hello
r : 'hello' ID ; // match keyword hello followed by an identifier
ID : [a-z]+ ; // match lower-case identifiers
WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines, \r (Windows)

To keep things tidy, let’s put grammar file Hello.g4 in its own directory, such
as /tmp/test. Then we can run ANTLR on it and compile the results.

$ cd /tmp/test
$ # copy-n-paste Hello.g4 or download the file into /tmp/test
$ antlr4 Hello.g4 # Generate parser and lexer using antlr4 alias from before
$ ls
Hello.g4 HelloLexer.java HelloParser.java
Hello.tokens HelloLexer.tokens
HelloBaseListener.java HelloListener.java
$ javac *.java # Compile ANTLR-generated code

Running the ANTLR tool on Hello.g4 generates an executable recognizer em-
bodied by HelloParser.java and HelloLexer.java, but we don’t have a main program
to trigger language recognition. (We’ll learn what parsers and lexers are in
the next chapter.) That’s the typical case at the start of a project. You’ll play
around with a few different grammars before building the actual application.
It’d be nice to avoid having to create a main program to test every new
grammar.

ANTLR provides a flexible testing tool in the runtime library called TestRig. It
can display lots of information about how a recognizer matches input from a
file or standard input. TestRig uses Java reflection to invoke compiled recogniz-
ers. Like before, it’s a good idea to create a convenient alias or batch file. I’m
going to call it grun throughout the book (but you can call it whatever you
want).

$ alias grun='java org.antlr.v4.runtime.misc.TestRig'

The test rig takes a grammar name, a starting rule name kind of like a main()
method, and various options that dictate the output we want. Let’s say we’d
like to print the tokens created during recognition. Tokens are vocabulary
symbols like keyword hello and identifier parrt. To test the grammar, start up
grun as follows:

$ grun Hello r -tokens # start the TestRig on grammar Hello at rule r➾
hello parrt # input for the recognizer that you type➾
EOF # type ctrl-D on Unix or Ctrl+Z on Windows➾

Chapter 1. Meet ANTLR • 6

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/install/Hello.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[@0,0:4='hello',<1>,1:0] # these three lines are output from grun❮
[@1,6:10='parrt',<2>,1:6]
[@2,12:11='<EOF>',<-1>,2:0]

After you hit a newline on the grun command, the computer will patiently wait
for you to type in hello parrt followed by a newline. At that point, you must type
the end-of-file character to terminate reading from standard input; otherwise,
the program will stare at you for eternity. Once the recognizer has read all of
the input, TestRig prints out the list of tokens per the use of option -tokens on
grun.

Each line of the output represents a single token and shows everything we
know about the token. For example, [@1,6:10='parrt',<2>,1:6] indicates that the
token is the second token (indexed from 0), goes from character position 6 to
10 (inclusive starting from 0), has text parrt, has token type 2 (ID), is on line 1
(from 1), and is at character position 6 (starting from zero and counting tabs
as a single character).

We can print the parse tree in LISP-style text form (root children) just as easily.

$ grun Hello r -tree➾
hello parrt➾
EOF➾
(r hello parrt)❮

The easiest way to see how a grammar recognizes the input, though, is by
looking at the parse tree visually. Running TestRig with the grun -gui option, grun
Hello r -gui, produces the following dialog box:

Running TestRig without any command-line options prints a small help
message.

$ grun
java org.antlr.v4.runtime.misc.TestRig GrammarName startRuleName

[-tokens] [-tree] [-gui] [-ps file.ps] [-encoding encodingname]
[-trace] [-diagnostics] [-SLL]
[input-filename(s)]

Use startRuleName='tokens' if GrammarName is a lexer grammar.
Omitting input-filename makes rig read from stdin.

report erratum • discuss

Executing ANTLR and Testing Recognizers • 7

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

As we go along in the book, we’ll use many of those options; here’s briefly
what they do:

-tokens prints out the token stream.

-tree prints out the parse tree in LISP form.

-gui displays the parse tree visually in a dialog box.

-ps file.ps generates a visual representation of the parse tree in PostScript and
stores it in file.ps. The parse tree figures in this chapter were generated
with -ps.

-encoding encodingname specifies the test rig input file encoding if the current
locale would not read the input properly. For example, we need this option
to parse a Japanese-encoded XML file in Section 12.4, Parsing and Lexing
XML, on page 224.

-trace prints the rule name and current token upon rule entry and exit.

-diagnostics turns on diagnostic messages during parsing. This generates mes-
sages only for unusual situations such as ambiguous input phrases.

-SLL uses a faster but slightly weaker parsing strategy.

Now that we have ANTLR installed and have tried it on a simple grammar,
let’s take a step back to look at the big picture and learn some important
terminology in the next chapter. After that, we’ll try a simple starter project
that recognizes and translates lists of integers such as {1, 2, 3}. Then, we’ll
walk through a number of interesting examples in Chapter 4, A Quick Tour,
on page 31 that demonstrate ANTLR’s capabilities and that illustrate a few
of the domains where ANTLR applies.

Chapter 1. Meet ANTLR • 8

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 2

The Big Picture
Now that we have ANTLR installed and some idea of how to build and run a
small example, we’re going to look at the big picture. In this chapter, we’ll
learn about the important processes, terminology, and data structures asso-
ciated with language applications. As we go along, we’ll identify the key ANTLR
objects and learn a little bit about what ANTLR does for us behind the scenes.

2.1 Let’s Get Meta!

To implement a language, we have to build an application that reads sentences
and reacts appropriately to the phrases and input symbols it discovers. (A
language is a set of valid sentences, a sentence is made up of phrases, and
a phrase is made up of subphrases and vocabulary symbols.) Broadly
speaking, if an application computes or “executes” sentences, we call that
application an interpreter. Examples include calculators, configuration file
readers, and Python interpreters. If we’re converting sentences from one lan-
guage to another, we call that application a translator. Examples include Java
to C# converters and compilers.

To react appropriately, the interpreter or translator has to recognize all of the
valid sentences, phrases, and subphrases of a particular language. Recognizing
a phrase means we can identify the various components and can differentiate
it from other phrases. For example, we recognize input sp = 100; as a program-
ming language assignment statement. That means we know that sp is the
assignment target and 100 is the value to store. Similarly, if we were recognizing
English sentences, we’d identify the parts of speech, such as the subject,
predicate, and object. Recognizing assignment sp = 100; also means that the
language application sees it as clearly distinct from, say, an import statement.
After recognition, the application would then perform a suitable operation
such as performAssignment("sp", 100) or translateAssignment("sp", 100).

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Programs that recognize languages are called parsers or syntax analyzers.
Syntax refers to the rules governing language membership, and in this book
we’re going to build ANTLR grammars to specify language syntax. A grammar
is just a set of rules, each one expressing the structure of a phrase. The ANTLR
tool translates grammars to parsers that look remarkably similar to what an
experienced programmer might build by hand. (ANTLR is a program that
writes other programs.) Grammars themselves follow the syntax of a language
optimized for specifying other languages: ANTLR’s meta-language.

Parsing is much easier if we break it down into two similar but distinct tasks
or stages. The separate stages mirror how our brains read English text. We
don’t read a sentence character by character. Instead, we perceive a sentence
as a stream of words. The human brain subconsciously groups character
sequences into words and looks them up in a dictionary before recognizing
grammatical structure. This process is more obvious if we’re reading Morse
code because we have to convert the dots and dashes to characters before
reading a message. It’s also obvious when reading long words such as
Humuhumunukunukuapua’a, the Hawaiian state fish.

The process of grouping characters into words or symbols (tokens) is called
lexical analysis or simply tokenizing. We call a program that tokenizes the
input a lexer. The lexer can group related tokens into token classes, or token
types, such as INT (integers), ID (identifiers), FLOAT (floating-point numbers),
and so on. The lexer groups vocabulary symbols into types when the parser
cares only about the type, not the individual symbols. Tokens consist of at
least two pieces of information: the token type (identifying the lexical structure)
and the text matched for that token by the lexer.

The second stage is the actual parser and feeds off of these tokens to recognize
the sentence structure, in this case an assignment statement. By default,
ANTLR-generated parsers build a data structure called a parse tree or syntax
tree that records how the parser recognized the structure of the input sentence
and its component phrases. The following diagram illustrates the basic data
flow of a language recognizer:

stat

assign

expr

100

sp ;=

chars

LEXER

tokens

PARSERsp = 100 ;sp = 100;

parse tree

Language recognizer

Chapter 2. The Big Picture • 10

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The interior nodes of the parse tree are phrase names that group and identify
their children. The root node is the most abstract phrase name, in this case
stat (short for “statement”). The leaves of a parse tree are always the input
tokens. Sentences, linear sequences of symbols, are really just serializations
of parse trees we humans grok natively in hardware. To get an idea across to
someone, we have to conjure up the same parse tree in their heads using a
word stream.

By producing a parse tree, a parser delivers a handy data structure to the
rest of the application that contains complete information about how the
parser grouped the symbols into phrases. Trees are easy to process in subse-
quent steps and are well understood by programmers. Better yet, the parser
can generate parse trees automatically.

By operating off parse trees, multiple applications that need to recognize the
same language can reuse a single parser. The other choice is to embed
application-specific code snippets directly into the grammar, which is what
parser generators have done traditionally. ANTLR v4 still allows this (see
Chapter 10, Attributes and Actions, on page 175), but parse trees make for a
much tidier and more decoupled design.

Parse trees are also useful for translations that require multiple passes (tree
walks) because of computation dependencies where one stage needs informa-
tion from a previous stage. In other cases, an application is just a heck of a
lot easier to code and test in multiple stages because it’s so complex. Rather
than reparse the input characters for each stage, we can just walk the parse
tree multiple times, which is much more efficient.

Because we specify phrase structure with a set of rules, parse-tree subtree
roots correspond to grammar rule names. As a preview of things to come,
here’s the grammar rule that corresponds to the first level of the assign subtree
from the diagram:

assign : ID '=' expr ';' ; // match an assignment statement like "sp = 100;"

Understanding how ANTLR translates such rules into human-readable parsing
code is fundamental to using and debugging grammars, so let’s dig deeper
into how parsing works.

2.2 Implementing Parsers

The ANTLR tool generates recursive-descent parsers from grammar rules such
as assign that we just saw. Recursive-descent parsers are really just a collection
of recursive methods, one per rule. The descent term refers to the fact that
parsing begins at the root of a parse tree and proceeds toward the leaves

report erratum • discuss

Implementing Parsers • 11

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

(tokens). The rule we invoke first, the start symbol, becomes the root of the
parse tree. That would mean calling method stat() for the parse tree in the
previous section. A more general term for this kind of parsing is top-down
parsing; recursive-descent parsers are just one kind of top-down parser
implementation.

To get an idea of what recursive-descent parsers look like, here’s the (slightly
cleaned up) method that ANTLR generates for rule assign:

// assign : ID '=' expr ';' ;
void assign() { // method generated from rule assign

match(ID); // compare ID to current input symbol then consume
match('=');
expr(); // match an expression by calling expr()
match(';');

}

The cool part about recursive-descent parsers is that the call graph traced
out by invoking methods stat(), assign(), and expr() mirrors the interior parse
tree nodes. (Take a quick peek back at the parse tree figure.) The calls to
match() correspond to the parse tree leaves. To build a parse tree manually in
a handbuilt parser, we’d insert “add new subtree root” operations at the start
of each rule method and an “add new leaf node” operation to match().

Method assign() just checks to make sure all necessary tokens are present and
in the right order. When the parser enters assign(), it doesn’t have to choose
between more than one alternative. An alternative is one of the choices on
the right side of a rule definition. For example, the stat rule that invokes assign
likely has a list of other kinds of statements.

/** Match any kind of statement starting at the current input position */
stat: assign // First alternative ('|' is alternative separator)

| ifstat // Second alternative
| whilestat

...
;

A parsing rule for stat looks like a switch.

void stat() {
switch («current input token») {

CASE ID : assign(); break;
CASE IF : ifstat(); break; // IF is token type for keyword 'if'
CASE WHILE : whilestat(); break;
...
default : «raise no viable alternative exception»

}
}

Chapter 2. The Big Picture • 12

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Method stat() has to make a parsing decision or prediction by examining the
next input token. Parsing decisions predict which alternative will be successful.
In this case, seeing a WHILE keyword predicts the third alternative of rule stat.
Rule method stat() therefore calls whilestat(). You might’ve heard the term
lookahead token before; that’s just the next input token. A lookahead token
is any token that the parser sniffs before matching and consuming it.

Sometimes, the parser needs lots of lookahead tokens to predict which alter-
native will succeed. It might even have to consider all tokens from the current
position until the end of file! ANTLR silently handles all of this for you, but
it’s helpful to have a basic understanding of decision making so debugging
generated parsers is easier.

To visualize parsing decisions, imagine a maze with a single entrance and a
single exit that has words written on the floor. Every sequence of words along
a path from entrance to exit represents a sentence. The structure of the maze
is analogous to the rules in a grammar that define a language. To test a sen-
tence for membership in a language, we compare the sentence’s words with
the words along the floor as we traverse the maze. If we can get to the exit by
following the sentence’s words, that sentence is valid.

To navigate the maze, we must choose a valid path at each fork, just as we
must choose alternatives in a parser. We have to decide which path to take
by comparing the next word or words in our sentence with the words visible
down each path emanating from the fork. The words we can see from the fork
are analogous to lookahead tokens. The decision is pretty easy when each
path starts with a unique word. In rule stat, each alternative begins with a
unique token, so stat() can distinguish the alternatives by looking at the first
lookahead token.

When the words starting each path from a fork overlap, a parser needs to
look further ahead, scanning for words that distinguish the alternatives.
ANTLR automatically throttles the amount of lookahead up-and-down as
necessary for each decision. If the lookahead is the same down multiple paths
to the exit (end of file), there are multiple interpretations of the current input
phrase. Resolving such ambiguities is our next topic. After that, we’ll figure
out how to use parse trees to build language applications.

2.3 You Can’t Put Too Much Water into a Nuclear Reactor

An ambiguous phrase or sentence is one that has more than one interpreta-
tion. In other words, the words fit more than one grammatical structure. The
section title “You Can’t Put Too Much Water into a Nuclear Reactor” is an

report erratum • discuss

You Can’t Put Too Much Water into a Nuclear Reactor • 13

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ambiguous sentence from a Saturday Night Live sketch I saw years ago. The
characters weren’t sure if they should be careful not to put too much water
into the reactor or if they should put lots of water into the reactor.

For Whom No Thanks Is Too Much

One of my favorite ambiguous sentences is on the dedication page of my friend Kevin’s
Ph.D. thesis: “To my Ph.D. supervisor, for whom no thanks is too much.” It’s unclear
whether he was grateful or ungrateful. Kevin claimed it was the latter, so I asked why
he had taken a postdoc job working for the same guy. His reply: “Revenge.”

Ambiguity can be funny in natural language but causes problems for comput-
er-based language applications. To interpret or translate a phrase, a program
has to uniquely identify the meaning. That means we have to provide unam-
biguous grammars so that the generated parser can match each input phrase
in exactly one way.

We haven’t studied grammars in detail yet, but let’s include a few ambiguous
grammars here to make the notion of ambiguity more concrete. You can refer
to this section if you run into ambiguities later when building a grammar.

Some ambiguous grammars are obvious.

stat: ID '=' expr ';' // match an assignment; can match "f();"
| ID '=' expr ';' // oops! an exact duplicate of previous alternative
;

expr: INT ;

Most of the time, though, the ambiguity will be more subtle, as in the following
grammar that can match a function call via both alternatives of rule stat:

stat: expr ';' // expression statement
| ID '(' ')' ';' // function call statement
;

expr: ID '(' ')'
| INT
;

Here are the two interpretations of input f(); starting in rule stat:

f)

;

stat

(

expr ;(f)

stat

f(); as expression f(); as function call

Chapter 2. The Big Picture • 14

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The parse tree on the left shows the case where f() matches to rule expr. The
tree on the right shows f() matching to the start of rule stat’s second alternative.

Since most language inventors design their syntax to be unambiguous, an
ambiguous grammar is analogous to a programming bug. We need to reorga-
nize the grammar to present a single choice to the parser for each input
phrase. If the parser detects an ambiguous phrase, it has to pick one of the
viable alternatives. ANTLR resolves the ambiguity by choosing the first alter-
native involved in the decision. In this case, the parser would choose the in-
terpretation of f(); associated with the parse tree on the left.

Ambiguities can occur in the lexer as well as the parser, but ANTLR resolves
them so the rules behave naturally. ANTLR resolves lexical ambiguities by
matching the input string to the rule specified first in the grammar. To see
how this works, let’s look at an ambiguity that’s common to most programming
languages: the ambiguity between keywords and identifier rules. Keyword
begin (followed by a nonletter) is also an identifier, at least lexically, so the
lexer can match b-e-g-i-n to either rule.

BEGIN : 'begin' ; // match b-e-g-i-n sequence; ambiguity resolves to BEGIN
ID : [a-z]+ ; // match one or more of any lowercase letter

For more on this lexical ambiguity, see Matching Identifiers, on page 74.

Note that lexers try to match the longest string possible for each token,
meaning that input beginner would match only to rule ID. The lexer would not
match beginner as BEGIN followed by an ID matching input ner.

Sometimes the syntax for a language is just plain ambiguous and no amount
of grammar reorganization will change that fact. For example, the natural
grammar for arithmetic expressions can interpret input such as 1+2*3 in two
ways, either by performing the operations left to right (as Smalltalk does) or
in precedence order like most languages. We’ll learn how to implicitly specify
the operator precedence order for expressions in Section 5.4, Dealing with
Precedence, Left Recursion, and Associativity, on page 69.

The venerable C language exhibits another kind of ambiguity, which we can
resolve using context information such as how an identifier is defined. Con-
sider the code snippet i*j;. Syntactically, it looks like an expression, but its
meaning, or semantics, depends on whether i is a type name or variable. If i
is a type name, then the snippet isn’t an expression. It’s a declaration of
variable j as a pointer to type i. We’ll see how to resolve these ambiguities in
Chapter 11, Altering the Parse with Semantic Predicates, on page 189.

report erratum • discuss

You Can’t Put Too Much Water into a Nuclear Reactor • 15

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Parsers by themselves test input sentences only for language membership
and build a parse tree. That’s crucial stuff, but it’s time to see how language
applications use parse trees to interpret or translate the input.

2.4 Building Language Applications Using Parse Trees

To make a language application, we have to execute some appropriate code
for each input phrase or subphrase. The easiest way to do that is to operate
on the parse tree created automatically by the parser. The nice thing about
operating on the tree is that we’re back in familiar Java territory. There’s no
further ANTLR syntax to learn in order to build an application.

Let’s start by looking more closely at the data structures and class names
ANTLR uses for recognition and for parse trees. A passing familiarity with the
data structures will make future discussions more concrete.

Earlier we learned that lexers process characters and pass tokens to the
parser, which in turn checks syntax and creates a parse tree. The correspond-
ing ANTLR classes are CharStream, Lexer, Token, Parser, and ParseTree. The “pipe”
connecting the lexer and parser is called a TokenStream. The diagram below
illustrates how objects of these types connect to each other in memory.

s

sp = 100 ;

p = 1 0 0 ; CharStream

TokenStream

RuleNode

0..1 5..73 8

0 1 2 3 4 5 6 7 8index:

TerminalNode

parse tree
stat

assign

expr

These ANTLR data structures share as much data as possible to reduce
memory requirements. The diagram shows that leaf (token) nodes in the parse
tree are containers that point at tokens in the token stream. The tokens record
start and stop character indexes into the CharStream, rather than making copies

Chapter 2. The Big Picture • 16

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

of substrings. There are no tokens associated with whitespace characters
(indexes 2 and 4) since we can assume our lexer tosses out whitespace.

The figure also shows ParseTree subclasses RuleNode and TerminalNode that corre-
spond to subtree roots and leaf nodes. RuleNode has familiar methods such as
getChild() and getParent(), but RuleNode isn’t specific to a particular grammar. To
better support access to the elements within specific nodes, ANTLR generates
a RuleNode subclass for each rule. The following figure shows the specific
classes of the subtree roots for our assignment statement example, which
are StatContext, AssignContext, and ExprContext:

stat

assign

expr

100

sp ;=

StatContext

AssignContext

ExprContext

100
TerminalNode

sp
TerminalNode

;
TerminalNode

=
TerminalNode

Parse tree Parse tree node class names

These are called context objects because they record everything we know
about the recognition of a phrase by a rule. Each context object knows the
start and stop tokens for the recognized phrase and provides access to all of
the elements of that phrase. For example, AssignContext provides methods ID()
and expr() to access the identifier node and expression subtree.

Given this description of the concrete types, we could write code by hand to
perform a depth-first walk of the tree. We could perform whatever actions we
wanted as we discovered and finished nodes. Typical operations are things
such as computing results, updating data structures, or generating output.
Rather than writing the same tree-walking boilerplate code over again for
each application, though, we can use the tree-walking mechanisms that
ANTLR generates automatically.

2.5 Parse-Tree Listeners and Visitors

ANTLR provides support for two tree-walking mechanisms in its runtime
library. By default, ANTLR generates a parse-tree listener interface that
responds to events triggered by the built-in tree walker. The listeners them-
selves are exactly like SAX document handler objects for XML parsers. SAX
listeners receive notification of events like startDocument() and endDocument(). The

report erratum • discuss

Parse-Tree Listeners and Visitors • 17

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

methods in a listener are just callbacks, such as we’d use to respond to a
checkbox click in a GUI application. Once we look at listeners, we’ll see how
ANTLR can also generate tree walkers that follow the visitor design pattern.1

Parse-Tree Listeners

To walk a tree and trigger calls into a listener, ANTLR’s runtime provides class
ParseTreeWalker. To make a language application, we build a ParseTreeListener im-
plementation containing application-specific code that typically calls into a
larger surrounding application.

ANTLR generates a ParseTreeListener subclass specific to each grammar with
enter and exit methods for each rule. As the walker encounters the node for
rule assign, for example, it triggers enterAssign() and passes it the AssignContext
parse-tree node. After the walker visits all children of the assign node, it triggers
exitAssign(). The tree diagram shown below shows ParseTreeWalker performing a
depth-first walk, represented by the thick dashed line.

StatContext

AssignContext

ExprContext

100
TerminalNode

sp
TerminalNode

;
TerminalNode

=
TerminalNode

enterAssign() exitAssign()

It also identifies where in the walk ParseTreeWalker calls the enter and exit
methods for rule assign. (The other listener calls aren’t shown.)

And the diagram in Figure 1, ParseTreeWalker call sequence, on page 19
shows the complete sequence of calls made to the listener by ParseTreeWalker
for our statement tree.

The beauty of the listener mechanism is that it’s all automatic. We don’t have
to write a parse-tree walker, and our listener methods don’t have to explicitly
visit their children.

1. http://en.wikipedia.org/wiki/Visitor_pattern

Chapter 2. The Big Picture • 18

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Visitor_pattern
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

WALKER
Rest of

Application

APIs

stat

assign

expr

100

sp ;=

visitTerminal(TerminalNode)

enterStat(StatContext)

exitStat(StatContext)

enterAssign(AssignContext)

exitAssign(AssignContext)

enterExpr(ExprContext)

exitExpr(ExprContext)

visitTerminal(TerminalNode)
visitTerminal(TerminalNode)

visitTerminal(TerminalNode)

Figure 1—ParseTreeWalker call sequence

Parse-Tree Visitors

There are situations, however, where we want to control the walk itself,
explicitly calling methods to visit children. Option -visitor asks ANTLR to gen-
erate a visitor interface from a grammar with a visit method per rule. Here’s
the familiar visitor pattern operating on our parse tree:

StatContext

AssignContext

ExprContext

100
TerminalNode

sp
TerminalNode

;
TerminalNode

=
TerminalNode

visitX() MyVisitor

visitTerminal(TerminalNode)

visitStat(StatContext)
visitAssign(AssignContext)
visitExpr(ExprContext)

Rest of
Application

APIs

The thick dashed line shows a depth-first walk of the parse tree. The thin
dashed lines indicate the method call sequence among the visitor methods.
To initiate a walk of the tree, our application-specific code would create a
visitor implementation and call visit().

ParseTree tree = ... ; // tree is result of parsing
MyVisitor v = new MyVisitor();
v.visit(tree);

ANTLR’s visitor support code would then call visitStat() upon seeing the root
node. From there, the visitStat() implementation would call visit() with the children
as arguments to continue the walk. Or, visitMethod() could explicitly call visitAs-
sign(), and so on.

report erratum • discuss

Parse-Tree Listeners and Visitors • 19

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR gives us a leg up over writing everything ourselves by generating the visitor
interface and providing a class with default implementations for the visitor
methods. This way, we avoid having to override every method in the interface,
letting us focus on just the methods of interest. We’ll learn all about visitors and
listeners in Chapter 7, Decoupling Grammars from Application-Specific Code, on
page 109.

Parsing Terms

This chapter introduced a number of important language recognition terms.

Language A language is a set of valid sentences; sentences are composed of phrases,
which are composed of subphrases, and so on.

Grammar A grammar formally defines the syntax rules of a language. Each rule in
a grammar expresses the structure of a subphrase.

Syntax tree or parse tree This represents the structure of the sentence where each
subtree root gives an abstract name to the elements beneath it. The subtree roots
correspond to grammar rule names. The leaves of the tree are symbols or tokens
of the sentence.

Token A token is a vocabulary symbol in a language; these can represent a category
of symbols such as “identifier” or can represent a single operator or keyword.

Lexer or tokenizer This breaks up an input character stream into tokens. A lexer
performs lexical analysis.

Parser A parser checks sentences for membership in a specific language by checking
the sentence’s structure against the rules of a grammar. The best analogy for
parsing is traversing a maze, comparing words of a sentence to words written
along the floor to go from entrance to exit. ANTLR generates top-down parsers
called ALL(*) that can use all remaining input symbols to make decisions. Top-
down parsers are goal-oriented and start matching at the rule associated with
the coarsest construct, such as program or inputFile.

Recursive-descent parser This is a specific kind of top-down parser implemented
with a function for each rule in the grammar.

Lookahead Parsers use lookahead to make decisions by comparing the symbols that
begin each alternative.

So, now we have the big picture. We looked at the overall data flow from
character stream to parse tree and identified the key class names in the
ANTLR runtime. And we just saw a summary of the listener and visitor
mechanisms used to connect parsers with application-specific code. Let’s
make this all more concrete by working through a real example in the next
chapter.

Chapter 2. The Big Picture • 20

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 3

A Starter ANTLR Project
For our first project, let’s build a grammar for a tiny subset of C or one of its
derivatives like Java. In particular, let’s recognize integers in, possibly nested,
curly braces like {1, 2, 3} and {1, {2, 3}, 4}. These constructs could be int array
or struct initializers. A grammar for this syntax would come in handy in a
variety of situations. For one, we could use it to build a source code refactoring
tool for C that converted integer arrays to byte arrays if all of the initialized
values fit within a byte. We could also use this grammar to convert initialized
Java short arrays to strings. For example, we could transform the following:

static short[] data = {1,2,3};

into the following equivalent string with Unicode constants:

static String data = "\u0001\u0002\u0003"; // Java char are unsigned short

where Unicode character specifiers, such as \u0001, use four hexadecimal
digits representing a 16-bit character value, that is, a short.

The reason we might want to do this translation is to overcome a limitation
in the Java .class file format. A Java class file stores array initializers as a
sequence of explicit array-element initializers, equivalent to data[0]=1; data[1]=2;
data[2]=3;, instead of a compact block of packed bytes.1 Because Java limits
the size of initialization methods, it limits the size of the arrays we can initial-
ize. In contrast, a Java class file stores a string as a contiguous sequence of
shorts. Converting array initializers to strings results in a more compact class
file and avoids Java’s initialization method size limit.

By working through this starter example, you’ll learn a bit of ANTLR grammar
syntax, what ANTLR generates from a grammar, how to incorporate the

1. To learn more about this topic, check out a video of my JVM Language Summit pre-
sentation: http://www.mefeedia.com/watch/24642856.

report erratum • discusswww.it-ebooks.info

http://www.mefeedia.com/watch/24642856
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

generated parser into a Java application, and how to build a translator with
a parse-tree listener.

3.1 The ANTLR Tool, Runtime, and Generated Code

To get started, let’s peek inside ANTLR’s jar. There are two key ANTLR compo-
nents: the ANTLR tool itself and the ANTLR runtime (parse-time) API. When
we say “run ANTLR on a grammar,” we’re talking about running the ANTLR
tool, class org.antlr.v4.Tool. Running ANTLR generates code (a parser and a lexer)
that recognizes sentences in the language described by the grammar. A lexer
breaks up an input stream of characters into tokens and passes them to a
parser that checks the syntax. The runtime is a library of classes and methods
needed by that generated code such as Parser, Lexer, and Token. First we run
ANTLR on a grammar and then compile the generated code against the runtime
classes in the jar. Ultimately, the compiled application runs in conjunction
with the runtime classes.

The first step to building a language application is to create a grammar that
describes a language’s syntactic rules (the set of valid sentences). We’ll learn
how to write grammars in Chapter 5, Designing Grammars, on page 57, but
for the moment, here’s a grammar that’ll do what we want:

starter/ArrayInit.g4
/** Grammars always start with a grammar header. This grammar is called
* ArrayInit and must match the filename: ArrayInit.g4
*/

grammar ArrayInit;

/** A rule called init that matches comma-separated values between {...}. */
init : '{' value (',' value)* '}' ; // must match at least one value

/** A value can be either a nested array/struct or a simple integer (INT) */
value : init

| INT
;

// parser rules start with lowercase letters, lexer rules with uppercase
INT : [0-9]+ ; // Define token INT as one or more digits
WS : [\t\r\n]+ -> skip ; // Define whitespace rule, toss it out

Let’s put grammar file ArrayInit.g4 in its own directory, such as /tmp/array (by
cutting and pasting or downloading the source code from the book website).
Then, we can run ANTLR (the tool) on the grammar file.

$ cd /tmp/array
$ antlr4 ArrayInit.g4 # Generate parser and lexer using antlr4 alias

Chapter 3. A Starter ANTLR Project • 22

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/starter/ArrayInit.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

From grammar ArrayInit.g4, ANTLR generates lots of files that we’d normally
have to write by hand.

grammar ArrayInit;
init : '{' value (',' value)* '}' ;
value : init
 | INT
 ;
INT : [0-9]+ ;
WS : [\t\n]+ -> skip ;

ArrayInitParser.java

ArrayInitLexer.java

ArrayInit.tokens

ArrayInitListener.java

ArrayInitBaseListener.java

ArrayInit.g4

ArrayInitLexer.tokens

At this point, we’re just trying to get the gist of the development process, so
here’s a quick description of the generated files:

ArrayInitParser.java This file contains the parser class definition specific to
grammar ArrayInit that recognizes our array language syntax.

public class ArrayInitParser extends Parser { ... }

It contains a method for each rule in the grammar as well as some support
code.

ArrayInitLexer.java ANTLR automatically extracts a separate parser and lexer
specification from our grammar. This file contains the lexer class definition,
which ANTLR generated by analyzing the lexical rules INT and WS as well
as the grammar literals '{', ',', and '}'. Recall that the lexer tokenizes the
input, breaking it up into vocabulary symbols. Here’s the class outline:

public class ArrayInitLexer extends Lexer { ... }

ArrayInit.tokens ANTLR assigns a token type number to each token we define
and stores these values in this file. It’s needed when we split a large
grammar into multiple smaller grammars so that ANTLR can synchronize
all the token type numbers. See Importing Grammars, on page 36.

ArrayInitListener.java, ArrayInitBaseListener.java By default, ANTLR parsers build a
tree from the input. By walking that tree, a tree walker can fire “events”
(callbacks) to a listener object that we provide. ArrayInitListener is the interface
that describes the callbacks we can implement. ArrayInitBaseListener is a set
of empty default implementations. This class makes it easy for us to
override just the callbacks we’re interested in. (See Section 7.2, Implement-
ing Applications with Parse-Tree Listeners, on page 112.) ANTLR can also

report erratum • discuss

The ANTLR Tool, Runtime, and Generated Code • 23

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

generate tree visitors for us with the -visitor command-line option. (See
Traversing Parse Trees with Visitors, on page 119.)

We’ll use the listener classes to translate short array initializers to String objects
shortly (sorry about the pun), but first let’s verify that our parser correctly
matches some sample input.

ANTLR Grammars Are Stronger Than Regular Expressions

Those of you familiar with regular expressionsa might be wondering if ANTLR is overkill
for such a simple recognition problem. It turns out that we can’t use regular expres-
sions to recognize initializations because of nested initializers. Regular expressions
have no memory in the sense that they can’t remember what they matched earlier in
the input. Because of that, they don’t know how to match up left and right curlies.
We’ll get to this in more detail in Pattern: Nested Phrase, on page 65.

a. http://en.wikipedia.org/wiki/Regular_expression

3.2 Testing the Generated Parser

Once we’ve run ANTLR on our grammar, we need to compile the generated
Java source code. We can do that by simply compiling everything in our
/tmp/array directory.

$ cd /tmp/array
$ javac *.java # Compile ANTLR-generated code

If you get a ClassNotFoundException error from the compiler, that means you
probably haven’t set the Java CLASSPATH correctly. On UNIX systems, you’ll
need to execute the following command (and likely add to your start-up script
such as .bash_profile):

$ export CLASSPATH=".:/usr/local/lib/antlr-4.0-complete.jar:$CLASSPATH"

To test our grammar, we use the TestRig via alias grun that we saw in the previ-
ous chapter. Here’s how to print out the tokens created by the lexer:

$ grun ArrayInit init -tokens➾
{99, 3, 451}➾
EOF➾
[@0,0:0='{',<1>,1:0]❮
[@1,1:2='99',<4>,1:1]
[@2,3:3=',',<2>,1:3]
[@3,5:5='3',<4>,1:5]
[@4,6:6=',',<2>,1:6]
[@5,8:10='451',<4>,1:8]
[@6,11:11='}',<3>,1:11]
[@7,13:12='<EOF>',<-1>,2:0]

Chapter 3. A Starter ANTLR Project • 24

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Regular_expression
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

After typing in array initializer {99, 3, 451}, we have to hit EOF
2 on a line by itself.

By default, ANTLR loads the entire input before processing. (That’s the most
common case and the most efficient.)

Each line of the output represents a single token and shows everything we
know about the token. For example, [@5,8:10='451',<4>,1:8] indicates that it’s
the token at index 5 (indexed from 0), goes from character position 8 to 10
(inclusive starting from 0), has text 451, has token type 4 (INT), is on line 1
(from 1), and is at character position 8 (starting from zero and counting tabs
as a single character). Notice that there are no tokens for the space and
newline characters. Rule WS in our grammar tosses them out because of the
-> skip directive.

To learn more about how the parser recognized the input, we can ask for the
parse tree with the -tree option.

$ grun ArrayInit init -tree➾
{99, 3, 451}➾
EOF➾
(init { (value 99) , (value 3) , (value 451) })❮

Option -tree prints out the parse tree in LISP-like text form (root children). Or,
we can use the -gui option to visualize the tree in a dialog box. Try it with a
nested group of integers as input: {1,{2,3},4}.

$ grun ArrayInit init -gui➾
{1,{2,3},4}➾
EOF➾

Here’s the parse tree dialog box that pops up:

2. The end-of-file character is Ctrl+D on Unix and Ctrl+Z on Windows.

report erratum • discuss

Testing the Generated Parser • 25

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

In English, the parse tree says, “The input is an initializer with three values
surrounded by curly braces. The first and third values are the integers 1 and
4. The second value is itself an initializer with two values surrounded by curly
braces. Those values are integers 2 and 3.”

Those interior nodes, init and value, are really handy because they identify all
of the various input elements by name. It’s kind of like identifying the verb
and subject in an English sentence. The best part is that ANTLR creates that
tree automatically for us based upon the rule names in our grammar. We’ll
build a translator based on this grammar at the end of this chapter using a
built-in tree walker to trigger callbacks like enterInit() and enterValue().

Now that we can run ANTLR on a grammar and test it, it’s time to think about
how to call this parser from a Java application.

3.3 Integrating a Generated Parser into a Java Program

Once we have a good start on a grammar, we can integrate the ANTLR-gener-
ated code into a larger application. In this section, we’ll look at a simple Java
main() that invokes our initializer parser and prints out the parse tree like
TestRig’s -tree option. Here’s a boilerplate Test.java file that embodies the overall
recognizer data flow we saw in Section 2.1, Let's Get Meta!, on page 9:

starter/Test.java
// import ANTLR's runtime libraries
import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;

public class Test {
public static void main(String[] args) throws Exception {

// create a CharStream that reads from standard input
ANTLRInputStream input = new ANTLRInputStream(System.in);

// create a lexer that feeds off of input CharStream
ArrayInitLexer lexer = new ArrayInitLexer(input);

// create a buffer of tokens pulled from the lexer
CommonTokenStream tokens = new CommonTokenStream(lexer);

// create a parser that feeds off the tokens buffer
ArrayInitParser parser = new ArrayInitParser(tokens);

ParseTree tree = parser.init(); // begin parsing at init rule
System.out.println(tree.toStringTree(parser)); // print LISP-style tree

}
}

Chapter 3. A Starter ANTLR Project • 26

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/starter/Test.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The program uses a number of classes like CommonTokenStream and ParseTree
from ANTLR’s runtime library that we’ll learn more about starting in Section
4.1, Matching an Arithmetic Expression Language, on page 32.

Here’s how to compile everything and run Test:

$ javac ArrayInit*.java Test.java➾
$ java Test➾
{1,{2,3},4}➾
EOF➾
(init { (value 1) , (value (init { (value 2) , (value 3) })) , (value 4) })❮

ANTLR parsers also automatically report and recover from syntax errors. For
example, here’s what happens if we enter an initializer that’s missing the final
curly brace:

$ java Test➾
{1,2➾
EOF➾
line 2:0 missing '}' at '<EOF>'❮
(init { (value 1) , (value 2) <missing '}'>)

At this point, we’ve seen how to run ANTLR on a grammar and integrate the
generated parser into a trivial Java application. An application that merely
checks syntax is not that impressive, though, so let’s finish up by building a
translator that converts short array initializers to String objects.

3.4 Building a Language Application

Continuing with our array initializer example, our next goal is to translate
not just recognize initializers. For example, let’s translate Java short arrays
like {99 , 3 , 451 } to "\u0063\u0003\u01c3" where 63 is the hexadecimal representa-
tion of the 99 decimal.

To move beyond recognition, an application has to extract data from the parse
tree. The easiest way to do that is to have ANTLR’s built-in parse-tree walker
trigger a bunch of callbacks as it performs a depth-first walk. As we saw
earlier, ANTLR automatically generates a listener infrastructure for us. These
listeners are like the callbacks on GUI widgets (for example, a button would
notify us upon a button press) or like SAX events in an XML parser.

To write a program that reacts to the input, all we have to do is implement a
few methods in a subclass of ArrayInitBaseListener. The basic strategy is to have
each listener method print out a translated piece of the input when called to
do so by the tree walker.

report erratum • discuss

Building a Language Application • 27

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The beauty of the listener mechanism is that we don’t have to do any tree
walking ourselves. In fact, we don’t even have to know that the runtime is
walking a tree to call our methods. All we know is that our listener gets notified
at the beginning and end of phrases associated with rules in the grammar.
As we’ll see in Section 7.2, Implementing Applications with Parse-Tree Listeners,
on page 112, this approach reduces how much we have to learn about ANTLR
—we’re back in familiar programming language territory for anything but
phrase recognition.

Starting a translation project means figuring out how to convert each input
token or phrase to an output string. To do that, it’s a good idea to manually
translate a few representative samples in order to pick out the general phrase-
to-phrase conversions. In this case, the translation is pretty straightforward.

 { 99 , 3 , 451 }

" \u0063 \u0003 \u01c3 "

short array:

String form:

In English, the translation is a series of “X goes to Y” rules.

1. Translate { to ".

2. Translate } to ".

3. Translate integers to four-digit hexadecimal strings prefixed with \u.

To code the translator, we need to write methods that print out the converted
strings upon seeing the appropriate input token or phrase. The built-in tree
walker triggers callbacks in a listener upon seeing the beginning and end of
the various phrases. Here’s a listener implementation for our translation
rules:

starter/ShortToUnicodeString.java
/** Convert short array inits like {1,2,3} to "\u0001\u0002\u0003" */
public class ShortToUnicodeString extends ArrayInitBaseListener {

/** Translate { to " */
@Override
public void enterInit(ArrayInitParser.InitContext ctx) {

System.out.print('"');
}

/** Translate } to " */
@Override
public void exitInit(ArrayInitParser.InitContext ctx) {

System.out.print('"');
}

Chapter 3. A Starter ANTLR Project • 28

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/starter/ShortToUnicodeString.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

/** Translate integers to 4-digit hexadecimal strings prefixed with \\u */
@Override
public void enterValue(ArrayInitParser.ValueContext ctx) {

// Assumes no nested array initializers
int value = Integer.valueOf(ctx.INT().getText());
System.out.printf("\\u%04x", value);

}
}

We don’t need to override every enter/exit method; we do just the ones we
care about. The only unfamiliar expression is ctx.INT(), which asks the context
object for the integer INT token matched by that invocation of rule value. Context
objects record everything that happens during the recognition of a rule.

The only thing left to do is to create a translator application derived from the
Test boilerplate code shown earlier.

starter/Translate.java
// import ANTLR's runtime libraries
import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;

public class Translate {
public static void main(String[] args) throws Exception {

// create a CharStream that reads from standard input
ANTLRInputStream input = new ANTLRInputStream(System.in);
// create a lexer that feeds off of input CharStream
ArrayInitLexer lexer = new ArrayInitLexer(input);
// create a buffer of tokens pulled from the lexer
CommonTokenStream tokens = new CommonTokenStream(lexer);
// create a parser that feeds off the tokens buffer
ArrayInitParser parser = new ArrayInitParser(tokens);
ParseTree tree = parser.init(); // begin parsing at init rule

// Create a generic parse tree walker that can trigger callbacks➤
➤ ParseTreeWalker walker = new ParseTreeWalker();

// Walk the tree created during the parse, trigger callbacks➤
➤ walker.walk(new ShortToUnicodeString(), tree);
➤ System.out.println(); // print a \n after translation

}
}

The only difference from the boilerplate code is the highlighted section that
creates a tree walker and asks it to walk the tree returned from the parser.
As the tree walker traverses, it triggers calls into our ShortToUnicodeString listener.

Please note: To focus our attention and to reduce bloat, the remainder of the
book will typically show just the important or novel bits of code rather than
entire files. If you’re reading the electronic version of this book, you can always

report erratum • discuss

Building a Language Application • 29

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/starter/Translate.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

click the code snippet titles; the title bars are links to the full source code on
the Web. You can also grab the full source code bundle on the book’s website.3

Let’s build the translator and try it on our sample input.

$ javac ArrayInit*.java Translate.java➾
$ java Translate➾
{99, 3, 451}➾
EOF➾
"\u0063\u0003\u01c3"❮

It works! We’ve just built our first translator, without even touching the
grammar. All we had to do was implement a few methods that printed the
appropriate phrase translations. Moreover, we can generate completely differ-
ent output simply by passing in a different listener. Listeners effectively isolate
the language application from the grammar, making the grammar reusable
for other applications.

In the next chapter, we’ll take a whirlwind tour of ANTLR grammar notation
and the key features that make ANTLR powerful and easy to use.

3. http://pragprog.com/titles/tpantlr2/source_code

Chapter 3. A Starter ANTLR Project • 30

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/source_code
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 4

A Quick Tour
So far, we have learned how to install ANTLR and have looked at the key
processes, terminology, and building blocks needed to build a language
application. In this chapter, we’re going to take a whirlwind tour of ANTLR
by racing through a number of examples that illustrate its capabilities. We’ll
be glossing over a lot of details in the interest of brevity, so don’t worry if
things aren’t crystal clear. The goal is just to get a feel for what you can do
with ANTLR. We’ll look underneath the hood starting in Chapter 5, Designing
Grammars, on page 57. For those with experience using previous versions of
ANTLR, this chapter is a great way to retool.

This chapter is broken down into four broad topics that nicely illustrate the
feature set. It’s a good idea to download the code1 for this book (or follow the
links in the ebook version) and work through the examples as we go along.
That way, you’ll get used to working with grammar files and building ANTLR
applications. Keep in mind that many of the code snippets you see interspersed
in the text aren’t complete files so that we can focus on the interesting bits.

First, we’re going to work with a grammar for a simple arithmetic expression
language. We’ll test it initially using ANTLR’s built-in test rig and then learn
more about the boilerplate main program that launches parsers shown in
Section 3.3, Integrating a Generated Parser into a Java Program, on page 26.
Then, we’ll look at a nontrivial parse tree for the expression grammar. (Recall
that a parse tree records how a parser matches an input phrase.) For dealing
with very large grammars, we’ll see how to split a grammar into manageable
chunks using grammar imports. Next, we’ll check out how ANTLR-generated
parsers respond to invalid input.

1. http://pragprog.com/titles/tpantlr2/source_code

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/source_code
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Second, after looking at the parser for arithmetic expressions, we’ll use a
visitor pattern to build a calculator that walks expression grammar parse
trees. ANTLR parsers automatically generate visitor interfaces and blank
method implementations so we can get started painlessly.

Third, we’ll build a translator that reads in a Java class definition and spits out
a Java interface derived from the methods in that class. Our implementation will
use the tree listener mechanism that ANTLR also generates automatically.

Fourth, we’ll learn how to embed actions (arbitrary code) directly in the
grammar. Most of the time, we can build language applications with visitors
or listeners, but for the ultimate flexibility, ANTLR allows us to inject our own
application-specific code into the generated parser. These actions execute
during the parse and can collect information or generate output like any
other arbitrary code snippets. In conjunction with semantic predicates (Boolean
expressions), we can even make parts of our grammar disappear at runtime!
For example, we might want to turn the enum keyword on and off in a Java
grammar to parse different versions of the language. Without semantic pred-
icates, we’d need two different versions of the grammar.

Finally, we’ll zoom in on a few ANTLR features at the lexical (token) level. We’ll
see how ANTLR deals with input files that contain more than one language.
Then we’ll look at the awesome TokenStreamRewriter class that lets us tweak,
mangle, or otherwise manipulate token streams, all without disturbing the
original input stream. Finally, we’ll revisit our interface generator example to
learn how ANTLR can ignore whitespace and comments during Java parsing
but retain them for later processing.

Let’s begin our tour by getting acquainted with ANTLR grammar notation.
Make sure you have the antlr4 and grun aliases or scripts defined, as explained
in Section 1.2, Executing ANTLR and Testing Recognizers, on page 6.

4.1 Matching an Arithmetic Expression Language

For our first grammar, we’re going to build a simple calculator. Doing some-
thing with expressions makes sense because they’re so common. To keep
things simple, we’ll allow only the basic arithmetic operators (add, subtract,
multiply, and divide), parenthesized expressions, integer numbers, and vari-
ables. We’ll also restrict ourselves to integers instead of allowing floating-point
numbers.

Here’s some sample input that illustrates all language features:

Chapter 4. A Quick Tour • 32

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

tour/t.expr
193
a = 5
b = 6
a+b*2
(1+2)*3

In English, a program in our expression language is a sequence of statements
terminated by newlines. A statement is either an expression, an assignment,
or a blank line. Here’s an ANTLR grammar that’ll parse those statements and
expressions for us:

tour/Expr.g4
Line 1 grammar Expr;

-

-

prog:
/** The start rule; begin parsing here. */

-

stat: expr NEWLINE

stat+ ;
5

-

| ID '=' expr NEWLINE-

| NEWLINE-

;

expr:

-

10

- expr ('*'|'/') expr
| expr ('+'|'-') expr-

| INT-

| ID-

| '(' expr ')'15

;

ID : [a-zA-Z]+ ; // match identifiers

-

-

-

INT : [0-9]+ ; // match integers-

NEWLINE:'\r'? '\n' ; // return newlines to parser (is end-statement signal)20

WS : [\t]+ -> skip ; // toss out whitespace-

Without going into too much detail, let’s look at some of the key elements of
ANTLR’s grammar notation.

• Grammars consist of a set of rules that describe language syntax. There
are rules for syntactic structure like stat and expr as well as rules for
vocabulary symbols (tokens) such as identifiers and integers.

• Rules starting with a lowercase letter comprise the parser rules.

• Rules starting with an uppercase letter comprise the lexical (token) rules.

• We separate the alternatives of a rule with the | operator, and we can
group symbols with parentheses into subrules. For example, subrule ('*'|'/')
matches either a multiplication symbol or a division symbol.

report erratum • discuss

Matching an Arithmetic Expression Language • 33

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/t.expr
http://media.pragprog.com/titles/tpantlr2/code/tour/Expr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We’ll tackle all of this stuff in detail when we get to Chapter 5, Designing
Grammars, on page 57.

One of ANTLR v4’s most significant new features is its ability to handle (most
kinds of) left-recursive rules. A left-recursive rule is one that invokes itself at
the start of an alternative. For example, in this grammar, rule expr has alter-
natives on lines 11 and 12 that recursively invoke expr on the left edge.
Specifying arithmetic expression notation this way is dramatically easier than
what we’d need for the typical top-down parser strategy. In that strategy, we’d
need multiple rules, one for each operator precedence level. For more on this
feature, see Section 5.4, Dealing with Precedence, Left Recursion, and Associa-
tivity, on page 69.

The notation for the token definitions should be familiar to those with regular
expression experience. We’ll look at lots of lexical (token) rules in Chapter 6,
Exploring Some Real Grammars, on page 83. The only unusual syntax is the
-> skip operation on the WS whitespace rule. It’s a directive that tells the lexer
to match but throw out whitespace. (Every possible input character must be
matched by at least one lexical rule.) We avoid tying the grammar to a specific
target language by using formal ANTLR notation instead of an arbitrary code
snippet in the grammar that tells the lexer to skip.

OK, let’s take grammar Expr out for a joy ride. Download it either by clicking
the tour/Expr.g4 link on the previous code listing, if you’re viewing the ebook
version, or by cutting and pasting the grammar into a file called Expr.g4.

The easiest way to test grammars is with the built-in TestRig, which we can
access using alias grun. For example, here is the build and test sequence on
a Unix box:

$ antlr4 Expr.g4
$ ls Expr*.java
ExprBaseListener.java ExprListener.java
ExprLexer.java ExprParser.java
$ javac Expr*.java
$ grun Expr prog -gui t.expr # launches org.antlr.v4.runtime.misc.TestRig

Because of the -gui option, the test rig pops up a window showing the parse
tree, as shown in Figure 2, Window showing the parse tree, on page 35.

The parse tree is analogous to the function call tree our parser would trace
as it recognizes input. (ANTLR generates a function for each rule.)

It’s OK to develop and test grammars using the test rig, but ultimately we’ll
need to integrate our ANTLR-generated parser into an application. The main

Chapter 4. A Quick Tour • 34

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Figure 2—Window showing the parse tree

program given below shows the code necessary to create all necessary objects
and launch our expression language parser starting at rule prog:

tour/ExprJoyRide.java
Line 1 import org.antlr.v4.runtime.*;

- import org.antlr.v4.runtime.tree.*;
- import java.io.FileInputStream;
- import java.io.InputStream;
5 public class ExprJoyRide {

public static void main(String[] args) throws Exception {-

String inputFile = null;-

if (args.length>0) inputFile = args[0];-

InputStream is = System.in;-

if (inputFile!=null) is = new FileInputStream(inputFile);10

ANTLRInputStream input = new ANTLRInputStream(is);-

ExprLexer lexer = new ExprLexer(input);-

CommonTokenStream tokens = new CommonTokenStream(lexer);-

ExprParser parser = new ExprParser(tokens);-

ParseTree tree = parser.prog(); // parse; start at prog15

System.out.println(tree.toStringTree(parser)); // print tree as text-

}-

}-

Lines 7..11 create an input stream of characters for the lexer. Lines 12..14
create the lexer and parser objects and a token stream “pipe” between them.
Line 15 actually launches the parser. (Calling a rule method is like invoking

report erratum • discuss

Matching an Arithmetic Expression Language • 35

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/ExprJoyRide.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

that rule; we can call any parser rule method we want.) Finally, line 16 prints
out the parse tree returned from the rule method prog() in text form.

Here is how to build the test program and run it on input file t.expr:

$ javac ExprJoyRide.java Expr*.java➾
$ java ExprJoyRide t.expr➾
(prog❮

(stat (expr 193) \n)
(stat a = (expr 5) \n)
(stat b = (expr 6) \n)
(stat (expr (expr a) + (expr (expr b) * (expr 2))) \n)
(stat (expr (expr ((expr (expr 1) + (expr 2)))) * (expr 3)) \n)

)

The (slightly cleaned up) text representation of the parse tree is not as easy
to read as the visual representation, but it’s useful for functional testing.

This expression grammar is pretty small, but grammars can run into the
thousands of lines. In the next section, we’ll learn how to keep such large
grammars manageable.

Importing Grammars

It’s a good idea to break up very large grammars into logical chunks, just like
we do with software. One way to do that is to split a grammar into parser and
lexer grammars. That’s not a bad idea because there’s a surprising amount
of overlap between different languages lexically. For example, identifiers and
numbers are usually the same across languages. Factoring out lexical rules
into a “module” means we can use it for different parser grammars. Here’s a
lexer grammar containing all of the lexical rules:

tour/CommonLexerRules.g4
lexer grammar CommonLexerRules; // note "lexer grammar"

ID : [a-zA-Z]+ ; // match identifiers
INT : [0-9]+ ; // match integers
NEWLINE:'\r'? '\n' ; // return newlines to parser (end-statement signal)
WS : [\t]+ -> skip ; // toss out whitespace

Now we can replace the lexical rules from the original grammar with an import
statement.

tour/LibExpr.g4
grammar LibExpr; // Rename to distinguish from original
import CommonLexerRules; // includes all rules from CommonLexerRules.g4
/** The start rule; begin parsing here. */
prog: stat+ ;

Chapter 4. A Quick Tour • 36

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/CommonLexerRules.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/LibExpr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

stat: expr NEWLINE
| ID '=' expr NEWLINE
| NEWLINE
;

expr: expr ('*'|'/') expr
| expr ('+'|'-') expr
| INT
| ID
| '(' expr ')'
;

The build and test sequence is the same as it was without the import. We do
not run ANTLR on the imported grammar itself.

$ antlr4 LibExpr.g4 # automatically pulls in CommonLexerRules.g4➾
$ ls Lib*.java➾
LibExprBaseListener.java LibExprListener.java❮
LibExprLexer.java LibExprParser.java
$ javac LibExpr*.java➾
$ grun LibExpr prog -tree➾
3+4➾
EOF➾
(prog (stat (expr (expr 3) + (expr 4)) \n))❮

So far, we’ve assumed valid input, but error handling is an important part of
almost all language applications. Let’s see what ANTLR does with erroneous
input.

Handling Erroneous Input

ANTLR parsers automatically report and recover from syntax errors. For
example, if we forget a closing parenthesis in an expression, the parser
automatically emits an error message.

$ java ExprJoyRide➾
(1+2➾
3➾
EOF➾
line 1:4 mismatched input '\n' expecting {')', '+', '*', '-', '/'}❮
(prog

(stat (expr ((expr (expr 1) + (expr 2)) <missing ')'>) \n)
(stat (expr 3) \n)

)

Equally important is that the parser recovers to correctly match the second
expression (the 3).

When using the -gui option on grun, the parse-tree dialog automatically high-
lights error nodes in red.

report erratum • discuss

Matching an Arithmetic Expression Language • 37

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun LibExpr prog -gui➾
(1+2➾
34*69➾
EOF➾

Notice that ANTLR successively recovered from the error in the first expression
again to properly match the second.

ANTLR’s error mechanism has lots of flexibility. We can alter the error mes-
sages, catch recognition exceptions, and even alter the fundamental error
handling strategy. We’ll cover this in Chapter 9, Error Reporting and Recovery,
on page 149.

That completes our quick tour of grammars and parsing. We’ve looked at a
simple expression grammar and how to launch it using the built-in test rig
and a sample main program. We also saw how to get text and visual represen-
tations of parse trees that show how our grammar recognizes input phrases.
The import statement lets us break up grammars into modules. Now, let’s move
beyond language recognition to interpreting expressions (computing their
values).

4.2 Building a Calculator Using a Visitor

To get the previous arithmetic expression parser to compute values, we need
to write some Java code. ANTLR v4 encourages us to keep grammars clean
and use parse-tree visitors and other walkers to implement language applica-
tions. In this section, we’ll use the well-known visitor pattern to implement
our little calculator. To make things easier for us, ANTLR automatically gen-
erates a visitor interface and blank visitor implementation object.

Chapter 4. A Quick Tour • 38

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Before we get to the visitor, we need to make a few modifications to the
grammar. First, we need to label the alternatives of the rules. (The labels can
be any identifier that doesn’t collide with a rule name.) Without labels on the
alternatives, ANTLR generates only one visitor method per rule. (Chapter 7,
Decoupling Grammars from Application-Specific Code, on page 109 uses a similar
grammar to explain the visitor mechanism in more detail.) In our case, we’d
like a different visitor method for each alternative so that we can get different
“events” for each kind of input phrase. Labels appear on the right edge of
alternatives and start with the # symbol in our new grammar, LabeledExpr.

tour/LabeledExpr.g4
stat: expr NEWLINE # printExpr

| ID '=' expr NEWLINE # assign
| NEWLINE # blank
;

expr: expr op=('*'|'/') expr # MulDiv
| expr op=('+'|'-') expr # AddSub
| INT # int
| ID # id
| '(' expr ')' # parens
;

Next, let’s define some token names for the operator literals so that, later, we
can reference token names as Java constants in the visitor.

tour/LabeledExpr.g4
MUL : '*' ; // assigns token name to '*' used above in grammar
DIV : '/' ;
ADD : '+' ;
SUB : '-' ;

Now that we have a properly enhanced grammar, let’s start coding our calcu-
lator and see what the main program looks like. Our main program in file
Calc.java is nearly identical to the main() in ExprJoyRide.java from earlier. The first
difference is that we create lexer and parser objects derived from grammar
LabeledExpr, not Expr.

tour/Calc.java
LabeledExprLexer lexer = new LabeledExprLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
LabeledExprParser parser = new LabeledExprParser(tokens);
ParseTree tree = parser.prog(); // parse

We also can remove the print statement that displays the tree as text. The
other difference is that we create an instance of our visitor class, EvalVisitor,
which we’ll get to in just a second. To start walking the parse tree returned
from method prog(), we call visit().

report erratum • discuss

Building a Calculator Using a Visitor • 39

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/LabeledExpr.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/LabeledExpr.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/Calc.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

tour/Calc.java
EvalVisitor eval = new EvalVisitor();
eval.visit(tree);

All of our supporting machinery is now in place. The only thing left to do is
implement a visitor that computes and returns values by walking the parse
tree. To get started, let’s see what ANTLR generates for us when we type.

$ antlr4 -no-listener -visitor LabeledExpr.g4➾

First, ANTLR generates a visitor interface with a method for each labeled
alternative name.

public interface LabeledExprVisitor<T> {
T visitId(LabeledExprParser.IdContext ctx); # from label id
T visitAssign(LabeledExprParser.AssignContext ctx); # from label assign
T visitMulDiv(LabeledExprParser.MulDivContext ctx); # from label MulDiv
...

}

The interface definition uses Java generics with a parameterized type for the
return values of the visit methods. This allows us to derive implementation
classes with our choice of return value type to suit the computations we want
to implement.

Next, ANTLR generates a default visitor implementation called LabeledExprBase-
Visitor that we can subclass. In this case, our expression results are integers
and so our EvalVisitor should extend LabeledExprBaseVisitor<Integer>. To implement
the calculator, we override the methods associated with statement and
expression alternatives. Here it is in its full glory. You can either cut and
paste or save the tour/EvalVisitor link (ebook version).

tour/EvalVisitor.java
import java.util.HashMap;
import java.util.Map;

public class EvalVisitor extends LabeledExprBaseVisitor<Integer> {
/** "memory" for our calculator; variable/value pairs go here */
Map<String, Integer> memory = new HashMap<String, Integer>();

/** ID '=' expr NEWLINE */
@Override
public Integer visitAssign(LabeledExprParser.AssignContext ctx) {

String id = ctx.ID().getText(); // id is left-hand side of '='
int value = visit(ctx.expr()); // compute value of expression on right
memory.put(id, value); // store it in our memory
return value;

}

Chapter 4. A Quick Tour • 40

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Calc.java
http://media.pragprog.com/titles/tpantlr2/code/tour/EvalVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

/** expr NEWLINE */
@Override
public Integer visitPrintExpr(LabeledExprParser.PrintExprContext ctx) {

Integer value = visit(ctx.expr()); // evaluate the expr child
System.out.println(value); // print the result
return 0; // return dummy value

}

/** INT */
@Override
public Integer visitInt(LabeledExprParser.IntContext ctx) {

return Integer.valueOf(ctx.INT().getText());
}

/** ID */
@Override
public Integer visitId(LabeledExprParser.IdContext ctx) {

String id = ctx.ID().getText();
if (memory.containsKey(id)) return memory.get(id);
return 0;

}

/** expr op=('*'|'/') expr */
@Override
public Integer visitMulDiv(LabeledExprParser.MulDivContext ctx) {

int left = visit(ctx.expr(0)); // get value of left subexpression
int right = visit(ctx.expr(1)); // get value of right subexpression
if (ctx.op.getType() == LabeledExprParser.MUL) return left * right;
return left / right; // must be DIV

}

/** expr op=('+'|'-') expr */
@Override
public Integer visitAddSub(LabeledExprParser.AddSubContext ctx) {

int left = visit(ctx.expr(0)); // get value of left subexpression
int right = visit(ctx.expr(1)); // get value of right subexpression
if (ctx.op.getType() == LabeledExprParser.ADD) return left + right;
return left - right; // must be SUB

}

/** '(' expr ')' */
@Override
public Integer visitParens(LabeledExprParser.ParensContext ctx) {

return visit(ctx.expr()); // return child expr's value
}

}

And here is the build and test sequence that evaluates expressions in t.expr:

report erratum • discuss

Building a Calculator Using a Visitor • 41

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ antlr4 -no-listener -visitor LabeledExpr.g4 # -visitor is required!!!➾
$ ls LabeledExpr*.java➾
LabeledExprBaseVisitor.java LabeledExprParser.java❮
LabeledExprLexer.java LabeledExprVisitor.java
$ javac Calc.java LabeledExpr*.java➾
$ cat t.expr➾
193❮
a = 5
b = 6
a+b*2
(1+2)*3
$ java Calc t.expr➾
193❮
17
9

The takeaway is that we built a calculator without having to insert raw Java
actions into the grammar, as we would need to do in ANTLR v3. The grammar
is kept application independent and programming language neutral. The
visitor mechanism also keeps everything beyond the recognition-related stuff
in familiar Java territory. There’s no extra ANTLR notation to learn in order
to build a language application on top of a generated parser.

Before moving on, you might take a moment to try to extend this expression lan-
guage by adding a clear statement. It’s a great way to get your feet wet and do
something real without having to know all of the details. The clear command should
clear out the memory map, and you’ll need a new alternative in rule stat to recognize
it. Label the alternative with # clear and then run ANTLR on the grammar to get
the augmented visitor interface. Then, to make something happen upon clear,
implement visitor method visitClear(). Compile and run Calc following the earlier
sequence.

Let’s switch gears now and think about translation rather than evaluating or
interpreting input. In the next section, we’re going to use a variation of the visitor
called a listener to build a translator for Java source code.

4.3 Building a Translator with a Listener

Imagine your boss assigns you to build a tool that generates a Java interface
file from the methods in a Java class definition. Panic ensues if you’re a junior
programmer. As an experienced Java developer, you might suggest using the
Java reflection API or the javap tool to extract method signatures. If your Java
tool building kung fu is very strong, you might even try using a bytecode
library such as ASM.2 Then your boss says, “Oh, yeah. Preserve whitespace

2. http://asm.ow2.org

Chapter 4. A Quick Tour • 42

report erratum • discusswww.it-ebooks.info

http://asm.ow2.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

and comments within the bounds of the method signature.” There’s no way
around it now. We have to parse Java source code. For example, we’d like to
read in Java code like this:

tour/Demo.java
import java.util.List;
import java.util.Map;
public class Demo {

void f(int x, String y) { }
int[] g(/*no args*/) { return null; }
List<Map<String, Integer>>[] h() { return null; }

}

and generate an interface with the method signatures, preserving the
whitespace and comments.

tour/IDemo.java
interface IDemo {

void f(int x, String y);
int[] g(/*no args*/);
List<Map<String, Integer>>[] h();

}

Believe it or not, we’re going to solve the core of this problem in about fifteen
lines of code by listening to “events” fired from a Java parse-tree walker. The
Java parse tree will come from a parser generated from an existing Java
grammar included in the source code for this book. We’ll derive the name of
the generated interface from the class name and grab method signatures
(return type, method name, and argument list) from method definitions. For
a similar but more thoroughly explained example, see Section 8.3, Generating
a Call Graph, on page 134.

The key “interface” between the grammar and our listener object is called
JavaListener, and ANTLR automatically generates it for us. It defines all of the
methods that class ParseTreeWalker from ANTLR’s runtime can trigger as it tra-
verses the parse tree. In our case, we need to respond to three events by
overriding three methods: when the walker enters and exits a class definition
and when it encounters a method definition. Here are the relevant methods
from the generated listener interface:

public interface JavaListener extends ParseTreeListener {
void enterClassDeclaration(JavaParser.ClassDeclarationContext ctx);
void exitClassDeclaration(JavaParser.ClassDeclarationContext ctx);
void enterMethodDeclaration(JavaParser.MethodDeclarationContext ctx);
...

}

report erratum • discuss

Building a Translator with a Listener • 43

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Demo.java
http://media.pragprog.com/titles/tpantlr2/code/tour/IDemo.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The biggest difference between the listener and visitor mechanisms is that
listener methods are called by the ANTLR-provided walker object, whereas
visitor methods must walk their children with explicit visit calls. Forgetting
to invoke visit() on a node’s children means those subtrees don’t get visited.

To build our listener implementation, we need to know what rules classDeclaration
and methodDeclaration look like because listener methods have to grab phrase
elements matched by the rules. File Java.g4 is a complete grammar for Java,
but here are the two methods we need to look at for this problem:

tour/Java.g4
classDeclaration

: 'class' Identifier typeParameters? ('extends' type)?
('implements' typeList)?
classBody

;

tour/Java.g4
methodDeclaration

: type Identifier formalParameters ('[' ']')* methodDeclarationRest
| 'void' Identifier formalParameters methodDeclarationRest
;

So that we don’t have to implement all 200 or so interface methods, ANTLR
generates a default implementation called JavaBaseListener. Our interface
extractor can then subclass JavaBaseListener and override the methods of interest.

Our basic strategy will be to print out the interface header when we see the
start of a class definition. Then, we’ll print a terminating } at the end of the
class definition. Upon each method definition, we’ll spit out its signature.
Here’s the complete implementation:

tour/ExtractInterfaceListener.java
import org.antlr.v4.runtime.TokenStream;
import org.antlr.v4.runtime.misc.Interval;

public class ExtractInterfaceListener extends JavaBaseListener {
JavaParser parser;
public ExtractInterfaceListener(JavaParser parser) {this.parser = parser;}
/** Listen to matches of classDeclaration */
@Override
public void enterClassDeclaration(JavaParser.ClassDeclarationContext ctx){

System.out.println("interface I"+ctx.Identifier()+" {");
}
@Override
public void exitClassDeclaration(JavaParser.ClassDeclarationContext ctx) {

System.out.println("}");
}

Chapter 4. A Quick Tour • 44

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/ExtractInterfaceListener.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

/** Listen to matches of methodDeclaration */
@Override
public void enterMethodDeclaration(

JavaParser.MethodDeclarationContext ctx
)
{

// need parser to get tokens
TokenStream tokens = parser.getTokenStream();
String type = "void";
if (ctx.type()!=null) {

type = tokens.getText(ctx.type());
}
String args = tokens.getText(ctx.formalParameters());
System.out.println("\t"+type+" "+ctx.Identifier()+args+";");

}
}

To fire this up, we need a main program, which looks almost the same as the
others in this chapter. Our application code starts after we’ve launched the
parser.

tour/ExtractInterfaceTool.java
JavaLexer lexer = new JavaLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
JavaParser parser = new JavaParser(tokens);
ParseTree tree = parser.compilationUnit(); // parse

ParseTreeWalker walker = new ParseTreeWalker(); // create standard walker
ExtractInterfaceListener extractor = new ExtractInterfaceListener(parser);
walker.walk(extractor, tree); // initiate walk of tree with listener

We also need to add import org.antlr.v4.runtime.tree.*; at the top of the file.

Given grammar Java.g4 and our main() in ExtractInterfaceTool, here’s the complete
build and test sequence:

$ antlr4 Java.g4➾
$ ls Java*.java ExtractInterface*.java➾
ExtractInterfaceListener.java JavaBaseListener.java JavaListener.java❮
ExtractInterfaceTool.java JavaLexer.java JavaParser.java
$ javac Java*.java Extract*.java➾
$ java ExtractInterfaceTool Demo.java➾
interface IDemo {❮

void f(int x, String y);
int[] g(/*no args*/);
List<Map<String, Integer>>[] h();

}

This implementation isn’t quite complete because it doesn’t include in the
interface file the import statements for the types referenced by the interface

report erratum • discuss

Building a Translator with a Listener • 45

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/ExtractInterfaceTool.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

methods such as List. As an exercise, try handling the imports. It should
convince you that it’s easy to build these kinds of extractors or translators
using a listener. We don’t even need to know what the importDeclaration rule
looks like because enterImportDeclaration() should simply print the text matched
by the entire rule: parser.getTokenStream().getText(ctx).

The visitor and listener mechanisms work very well and promote the separation
of concerns between parsing and parser application. Sometimes, though, we
need extra control and flexibility.

4.4 Making Things Happen During the Parse

Listeners and visitors are great because they keep application-specific code
out of grammars, making grammars easier to read and preventing them from
getting entangled with a particular application. For the ultimate flexibility
and control, however, we can directly embed code snippets (actions) within
grammars. These actions are copied into the recursive-descent parser code
ANTLR generates. In this section, we’ll implement a simple program that reads
in rows of data and prints out the values found in a specific column. After
that, we’ll see how to make special actions, called semantic predicates,
dynamically turn parts of a grammar on and off.

Embedding Arbitrary Actions in a Grammar

We can compute values or print things out on-the-fly during parsing if we
don’t want the overhead of building a parse tree. On the other hand, it means
embedding arbitrary code within the expression grammar, which is harder;
we have to understand the effect of the actions on the parser and where to
position those actions.

To demonstrate actions embedded in a grammar, let’s build a program that
prints out a specific column from rows of data. This comes up all the time
for me because people send me text files from which I need to grab, say, the
name or email column. For our purposes, let’s use the following data:

tour/t.rows
parrt Terence Parr 101
tombu Tom Burns 020
bke Kevin Edgar 008

The columns are tab-delimited, and each row ends with a newline character.
Matching this kind of input is pretty simple grammatically.

file : (row NL)+ ; // NL is newline token: '\r'? '\n'
row : STUFF+ ;

Chapter 4. A Quick Tour • 46

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/t.rows
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

It gets mucked up, though, when we add actions. We need to create a con-
structor so that we can pass in the column number we want (counting from
1), and we need an action inside the (...)+ loop in rule row.

tour/Rows.g4
grammar Rows;

@parser::members { // add members to generated RowsParser
int col;
public RowsParser(TokenStream input, int col) { // custom constructor

this(input);
this.col = col;

}
}

file: (row NL)+ ;

row
locals [int i=0]

: (STUFF
{
$i++;
if ($i == col) System.out.println($STUFF.text);
}

)+
;

TAB : '\t' -> skip ; // match but don't pass to the parser
NL : '\r'? '\n' ; // match and pass to the parser
STUFF: ~[\t\r\n]+ ; // match any chars except tab, newline

The STUFF lexical rule matches anything that’s not a tab or newline, which
means we can have space characters in a column.

A suitable main program should be looking pretty familiar by now. The only
thing different here is that we’re passing in a column number to the parser
using a custom constructor and telling the parser not to build a tree.

tour/Col.java
RowsLexer lexer = new RowsLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
int col = Integer.valueOf(args[0]);
RowsParser parser = new RowsParser(tokens, col); // pass column number!
parser.setBuildParseTree(false); // don't waste time bulding a tree
parser.file(); // parse

There are a lot of details in there that we’ll explore in Chapter 10, Attributes
and Actions, on page 175. For now, actions are code snippets surrounded by
curly braces. The members action injects that code into the member area of

report erratum • discuss

Making Things Happen During the Parse • 47

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Rows.g4
http://media.pragprog.com/titles/tpantlr2/code/tour/Col.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

the generated parser class. The action within rule row accesses $i, the local
variable defined with the locals clause. It also uses $STUFF.text to get the text for
the most recently matched STUFF token.

Here’s the build and test sequence, one test per column:

$ antlr4 -no-listener Rows.g4 # don't need the listener➾
$ javac Rows*.java Col.java➾
$ java Col 1 < t.rows # print out column 1, reading from file t.rows➾
parrt❮
tombu
bke
$ java Col 2 < t.rows➾
Terence Parr❮
Tom Burns
Kevin Edgar
$ java Col 3 < t.rows➾
101❮
020
008

These actions extract and print values matched by the parser, but they don’t
alter the parse itself. Actions can also finesse how the parser recognizes input
phrases. In the next section, we’ll take the concept of embedded actions one
step further.

Altering the Parse with Semantic Predicates

Until we get to Chapter 11, Altering the Parse with Semantic Predicates, on
page 189, we can demonstrate the power of semantic predicates with a simple
example. Let’s look at a grammar that reads in sequences of integers. The
trick is that part of the input specifies how many integers to group together.
We don’t know until runtime how many integers to match. Here’s a sample
input file:

tour/t.data
2 9 10 3 1 2 3

The first number says to match the two subsequent numbers, 9 and 10. The
3 following the 10 says to match three more as a sequence. Our goal is a
grammar called Data that groups 9 and 10 together and then 1, 2, and 3 like
this:

$ antlr4 -no-listener Data.g4➾
$ javac Data*.java➾
$ grun Data file -tree t.data➾
(file (group 2 (sequence 9 10)) (group 3 (sequence 1 2 3)))❮

Chapter 4. A Quick Tour • 48

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/t.data
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The parse tree clearly identifies the groups.

9 3

sequence

group

2

file

group

3

2110

sequence

The key in the following Data grammar is a special Boolean-valued action
called a semantic predicate: {$i<=$n}?. That predicate evaluates to true until
we surpass the number of integers requested by the sequence rule parameter
n. False predicates make the associated alternative “disappear” from the
grammar and, hence, from the generated parser. In this case, a false predicate
makes the (...)* loop terminate and return from rule sequence.

tour/Data.g4
grammar Data;

file : group+ ;

group: INT sequence[$INT.int] ;

sequence[int n]
locals [int i = 1;]

: ({$i<=$n}? INT {$i++;})* // match n integers
;

INT : [0-9]+ ; // match integers
WS : [\t\n\r]+ -> skip ; // toss out all whitespace

Visually, the internal grammar representation of rule sequence used by the
parser looks something like this:

{$i<=$n}? INT {$i++}
sequence exit

The scissors and dashed line indicate that the predicate can snip that path,
leaving the parser with only one choice: the path to the exit.

Most of the time we won’t need such micromanagement, but it’s nice to know
we have a weapon for handling pathological parsing problems.

During our tour so far, we’ve focused on parsing features, but there is a lot
of interesting stuff going on at the lexical level. Let’s take a look.

report erratum • discuss

Making Things Happen During the Parse • 49

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Data.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

4.5 Cool Lexical Features

ANTLR has three great token-related features that are worth demonstrating
in our tour. First, we’ll see how to deal with formats like XML that have differ-
ent lexical structures (inside and outside tags) in the same file. Next, we’ll
learn how to insert a field into a Java class by tweaking the input stream. It’ll
show how to generate output that is very similar to the input with minimal
effort. And, lastly, we’ll see how ANTLR parsers can ignore whitespace and
comments without having to throw them out.

Island Grammars: Dealing with Different Formats in the Same File

All the sample input files we’ve seen so far contain a single language, but
there are common file formats that contain multiple languages. For example,
the @author tags and so on inside Java document comments follow a mini
language; everything outside the comment is Java code. Template engines
such as StringTemplate3 and Django4 have a similar problem. They have to
treat all of the text surrounding the template expressions differently. These
are often called island grammars.

ANTLR provides a well-known lexer feature called lexical modes that lets us
deal easily with files containing mixed formats. The basic idea is to have the
lexer switch back and forth between modes when it sees special sentinel
character sequences.

XML is a good example. An XML parser treats everything other than tags and
entity references (such as £) as text chunks. When the lexer sees <, it
switches to “inside” mode and switches back to the default mode when it sees
> or />. The following grammar demonstrates how this works. We’ll explore
this in more detail in Chapter 12, Wielding Lexical Black Magic, on page 203.

tour/XMLLexer.g4
lexer grammar XMLLexer;

// Default "mode": Everything OUTSIDE of a tag
OPEN : '<' -> pushMode(INSIDE) ;
COMMENT : '<!--' .*? '-->' -> skip ;
EntityRef : '&' [a-z]+ ';' ;
TEXT : ~('<'|'&')+ ; // match any 16 bit char minus < and &

// ----------------- Everything INSIDE of a tag ---------------------
mode INSIDE;

3. http://www.stringtemplate.org
4. https://www.djangoproject.com

Chapter 4. A Quick Tour • 50

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/XMLLexer.g4
http://www.stringtemplate.org
https://www.djangoproject.com
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CLOSE : '>' -> popMode ; // back to default mode
SLASH_CLOSE : '/>' -> popMode ;
EQUALS : '=' ;
STRING : '"' .*? '"' ;
SlashName : '/' Name ;
Name : ALPHA (ALPHA|DIGIT)* ;
S : [\t\r\n] -> skip ;

fragment
ALPHA : [a-zA-Z] ;

fragment
DIGIT : [0-9] ;

Let’s use the following XML file as a sample input to that grammar:

tour/t.xml
<tools>

<tool name="ANTLR">A parser generator</tool>
</tools>

Here’s how to do a build and launch the test rig:

$ antlr4 XMLLexer.g4➾
$ javac XML*.java➾
$ grun XML tokens -tokens t.xml➾
[@0,0:0='<',<1>,1:0]❮
[@1,1:5='tools',<10>,1:1]
[@2,6:6='>',<5>,1:6]
[@3,7:8='\n\t',<4>,1:7]
[@4,9:9='<',<1>,2:1]
[@5,10:13='tool',<10>,2:2]
[@6,15:18='name',<10>,2:7]
[@7,19:19='=',<7>,2:11]
[@8,20:26='"ANTLR"',<8>,2:12]
[@9,27:27='>',<5>,2:19]
[@10,28:45='A parser generator',<4>,2:20]
[@11,46:46='<',<1>,2:38]
[@12,47:51='/tool',<9>,2:39]
[@13,52:52='>',<5>,2:44]
[@14,53:53='\n',<4>,2:45]
[@15,54:54='<',<1>,3:0]
[@16,55:60='/tools',<9>,3:1]
[@17,61:61='>',<5>,3:7]
[@18,62:62='\n',<4>,3:8]
[@19,63:62='<EOF>',<-1>,4:9]

Each line of that output represents a token and contains the token index,
the start and stop character, the token text, the token type, and finally the
line and character position within the line. This tells us how the lexer tokenized
the input.

report erratum • discuss

Cool Lexical Features • 51

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/t.xml
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

On the test rig command line, the XML tokens sequence is normally a grammar
name followed by the start rule. In this case, we use the grammar name fol-
lowed by special rule name tokens to tell the test rig it should run the lexer
but not the parser. Then, we use test rig option -tokens to print out the list of
matched tokens.

Knowledge of the token stream flowing from the lexer to the parser can be
pretty useful. For example, some translation problems are really just tweaks
of the input. We can sometimes get away with altering the original token
stream rather than generating completely new output.

Rewriting the Input Stream

Let’s build a tool that processes Java source code to insert serialization
identifiers, serialVersionUID, for use with java.io.Serializable (like Eclipse does
automatically). We want to avoid implementing every listener method in a
JavaListener interface, generated from a Java grammar by ANTLR, just to capture
the text and print it back out. It’s easier to insert the appropriate constant
field into the original token stream and then print out the altered input stream.
No fuss, no muss.

Our main program looks exactly the same as the one in ExtractInterfaceTool.java
from Section 4.3, Building a Translator with a Listener, on page 42 except that
we print the token stream out when the listener has finished (highlighted
with an arrow).

tour/InsertSerialID.java

System.out.println(extractor.rewriter.getText());

ParseTreeWalker walker = new ParseTreeWalker(); // create standard walker
InsertSerialIDListener extractor = new InsertSerialIDListener(tokens);
walker.walk(extractor, tree); // initiate walk of tree with listener

// print back ALTERED stream
➤

To implement the listener, we need to trigger an insertion when we see the
start of a class.

tour/InsertSerialIDListener.java
import org.antlr.v4.runtime.TokenStream;
import org.antlr.v4.runtime.TokenStreamRewriter;

public class InsertSerialIDListener extends JavaBaseListener {
TokenStreamRewriter rewriter;
public InsertSerialIDListener(TokenStream tokens) {

rewriter = new TokenStreamRewriter(tokens);
}

Chapter 4. A Quick Tour • 52

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/InsertSerialID.java
http://media.pragprog.com/titles/tpantlr2/code/tour/InsertSerialIDListener.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

@Override
public void enterClassBody(JavaParser.ClassBodyContext ctx) {

String field = "\n\tpublic static final long serialVersionUID = 1L;";
rewriter.insertAfter(ctx.start, field);

}
}

The key is the TokenStreamRewriter object that knows how to give altered views
of a token stream without actually modifying the stream. It treats all of the
manipulation methods as “instructions” and queues them up for lazy execution
when traversing the token stream to render it back as text. The rewriter exe-
cutes those instructions every time we call getText().

Let’s build and test the listener on the Demo.java test file we used before.

$ antlr4 Java.g4➾
$ javac InsertSerialID*.java Java*.java➾
$ java InsertSerialID Demo.java➾
import java.util.List;❮
import java.util.Map;
public class Demo {

public static final long serialVersionUID = 1L;
void f(int x, String y) { }
int[] g(/*no args*/) { return null; }
List<Map<String, Integer>>[] h() { return null; }

}

With only a few lines of code, we were able to tweak a Java class definition
without disturbing anything outside of our insertion point. This strategy is
very effective for the general problem of source code instrumentation or
refactoring. The TokenStreamRewriter is a powerful and extremely efficient means
of manipulating a token stream.

One more lexical goodie before finishing our tour involves a mundane issue
but one that is a beast to solve without a general scheme like ANTLR’s token
channels.

Sending Tokens on Different Channels

The Java interface extractor we looked at earlier magically preserves white-
space and comments in method signatures such as the following:

int[] g(/*no args*/) { return null; }

Traditionally, this has been a nasty requirement to fulfill. For most grammars,
comments and whitespace are things the parser can ignore. If we don’t want
to explicitly allow whitespace and comments all over the place in a grammar,
we need the lexer to throw them out. Unfortunately, that means the whitespace

report erratum • discuss

Cool Lexical Features • 53

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

and comments are inaccessible to application code and any subsequent pro-
cessing steps. The secret to preserving but ignoring comments and whitespace
is to send those tokens to the parser on a “hidden channel.” The parser tunes
to only a single channel and so we can pass anything we want on the other
channels. Here’s how the Java grammar does it:

tour/Java.g4
COMMENT

: '/*' .*? '*/' -> channel(HIDDEN) // match anything between /* and */
;

WS : [\r\t\u000C\n]+ -> channel(HIDDEN)
;

The -> channel(HIDDEN) is a lexer command like the -> skip we discussed before.
In this case, it sets the channel number of these tokens so that it’s ignored
by the parser. The token stream still maintains the original sequence of tokens
but skips over the off-channel tokens when feeding the parser.

With these lexical features out of the way, we can wrap up our ANTLR tour.
This chapter covered all of the major elements that make ANTLR easy to use
and flexible. We didn’t cover any of the details, but we saw ANTLR in action
solving some small but real problems. We got a feel for grammar notation.
We implemented visitors and listeners that let us calculate and translate
without embedding actions in the grammar. We also saw that, sometimes,
embedded actions are exactly what we want in order to satisfy our inner
control freak. And, finally, we looked at some cool things we can do with
ANTLR lexers and token streams.

It’s time to slow down our pace and revisit all of the concepts explored in this
chapter with the goal of learning all of the details. Each chapter in the next
part of the book will take us another step toward becoming language imple-
menters. We’ll start by learning ANTLR notation and figuring out how to derive
grammars from examples and language reference manuals. Once we have
those fundamentals, we’ll build some grammars for real-world languages and
then learn the details of the tree listeners and visitors we just raced through.
After that, we’ll move on to some virtuoso topics in Part III.

Chapter 4. A Quick Tour • 54

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Part II

Developing Language Applications
with ANTLR Grammars

In Part II, we’ll learn how to derive grammars from
language specifications and sample inputs. We’ll
build grammars for comma-separated values, JSON,
the DOT graphics format, a simple programming
language, and R. Once we know how to design
grammars, we’ll dig into the details of building
language applications by walking parse trees.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Designing Grammars
In Part I, we got acquainted with ANTLR and saw a high-level view of grammars
and language applications. Now we’re going to slow down and learn the details
needed to perform useful tasks such as building internal data structures,
extracting information, and generating a translation of the input. The first
step on our journey, though, is to learn how to build grammars. In this
chapter, we’ll look at the most commonly used lexical and syntactic language
structures and figure out how to express them in ANTLR notation. Armed
with these ANTLR building blocks, we’ll combine them to build some real
grammars in the next chapter.

To learn how to build grammars, we can’t just wade through the various
ANTLR constructs. First, we need to study the common language patterns
and learn to identify them in computer language sentences. That is how we
get a picture of the overall language structure. (A language pattern is a
recurring grammatical structure, such as a sequence like subject–verb–object
in English or subject–object–verb in Japanese.) Ultimately, we need the ability
to divine a language’s structure from a set of representative input files. Once
we identify a language’s structure, we can express it formally with an ANTLR
grammar.

The good news is that there are relatively few fundamental language patterns
to deal with, despite the vast number of languages invented over the past fifty
years. This makes sense because people tend to design languages that follow
the constraints our brains place on natural language. We expect token order
to matter and expect dependencies between tokens. For example, {(}) is
ungrammatical because of the token order, and (1+2 drives us crazy looking
for the matching). Languages also tend to be similar because designers follow
common notation from mathematics. Even at the lexical level, languages tend
to reuse the same structures, such as identifiers, integers, strings, and so on.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The constraints of word order and dependency, derived from natural language,
blossom into four abstract computer language patterns.

• Sequence: This is a sequence of elements such as the values in an array
initializer.

• Choice: This is a choice between multiple, alternative phrases such as
the different kinds of statements in a programming language.

• Token dependence: The presence of one token requires the presence of
its counterpart elsewhere in a phrase such as matching left and right
parentheses.

• Nested phrase: This is a self-similar language construct such as nested
arithmetic expressions or nested statement blocks in a programming
language.

To implement these patterns, we really only need grammar rules comprised
of alternatives, token references, and rule references (Backus-Naur-Format
[BNF]). For convenience, though, we’ll also group those elements into subrules.
Subrules are just in-lined rules wrapped in parentheses. We can mark
subrules as optional (?) and as zero-or-more (*) or one-or-more (+) loops to
recognize the enclosed grammar fragments multiple times (Extended Backus-
Naur-Format [EBNF]).

No doubt most readers will have seen some form of grammar or at least regular
expressions during their career, but let’s start at the very beginning so we’re
all on the same page.

5.1 Deriving Grammars from Language Samples

Writing a grammar is a lot like writing software except that we work with
rules instead of functions or procedures. (Remember that ANTLR generates
a function for each rule in your grammar.) But, before focusing on the rule
innards, it’s worth discussing the overall anatomy of a grammar and how to
form an initial grammar skeleton. That’s what we’ll do in this section because
it’s an important first step in any language project. If you’re itching to build
and execute your first parser, you can revisit Chapter 4, A Quick Tour, on
page 31 or jump to the first example in the next chapter: Section 6.1, Parsing
Comma-Separated Values, on page 84. Feel free to pop back and forth to the
examples in the next chapter as we learn the fundamentals here.

Grammars consist of a header that names the grammar and a set of rules
that can invoke each other.

Chapter 5. Designing Grammars • 58

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

grammar MyG;
rule1 : «stuff» ;
rule2 : «more stuff» ;
...

Just like writing software, we have to figure out which rules we need, what
«stuff» is, and which rule is the start rule (analogous to a main() method).

To figure all this out for a given language, we either have to know that language
really well or have a set of representative input samples. Naturally, it helps
to have a grammar for the language from a reference manual or even in the
format of another parser generator. But for now, let’s assume we don’t have
an existing grammar as a guide.

Proper grammar design mirrors functional decomposition or top-down design
in the programming world. That means we work from the coarsest to the
finest level, identifying language structures and encoding them as grammatical
rules. So, the first task is to find a name for the coarsest language structure,
which becomes our start rule. In English, we could use sentence. For an XML
file, we could use document. For a Java file, we could use compilationUnit.

Designing the contents of the start rule is a matter of describing the overall
format of the input in English pseudocode, kind of like we do when writing
software. For example, “a comma-separated-value (CSV) file is a sequence of
rows terminated by newlines.” The essential word file to the left of is a is the
rule name, and everything to the right of is a becomes the «stuff» on the right
side of a rule definition.

file : «sequence of rows that are terminated by newlines» ;

Then we step down a level in granularity by describing the elements identified
on the right side of the start rule. The nouns on the right side are typically
references to either tokens or yet-to-be-defined rules. The tokens are elements
that our brain normally latches onto as words, punctuation, or operators.
Just as words are the atomic elements in an English sentence, tokens are
the atoms in a parser grammar. The rule references, however, refer to other
language structures that need to be broken down into more detail like row.

Stepping down another level of detail, we could say that a row is a sequence
of fields separated by commas. Then, a field is a number or string. Our
pseudocode looks like this:

file : «sequence of rows that are terminated by newlines» ;
row : «sequence of fields separated by commas» ;
field : «number or string» ;

report erratum • discuss

Deriving Grammars from Language Samples • 59

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

When we run out of rules to define, we have a rough draft of our grammar.

Let’s see how this technique works for describing some of the key structures
in a Java file. (We can make the rule names stand out by italicizing them.)
At the coarsest level, a Java compilation unit is an optional package specifier,
followed by one or more class definitions. Stepping down a level, a class defi-
nition is keyword class, followed by an identifier, followed optionally by a
superclass specifier, followed optionally by an implements clause, followed by
a class body. A class body is a series of members enclosed in curly braces. A
member is a nested class definition, a field, or a method. From here, we would
describe fields and methods and then the statements within methods. You
get the idea. Start at the highest possible level and work your way down,
treating even large subphrases like Java class definitions as rules to define
later. In grammar pseudocode, we’d start out like this:

compilationUnit : «optional packageSpec then classDefinitions» ;
packageSpec : 'package' identifier ';' ;
classDefinition :

'class' «optional superclassSpec optional implementsClause classBody» ;
superclassSpec : 'super' identifier ;
implementsClause :

'implements' «one or more identifiers separated by comma» ;
classBody : '{' «zero-or-more members» '}' ;
member : «nested classDefinition or field or method» ;
...

Designing a grammar for a large language like Java is a lot easier if we have
access to a grammar that we can use as a reference, but be careful. Blindly
following an existing grammar can lead you astray, as we’ll discuss next.

5.2 Using Existing Grammars as a Guide

Having access to existing grammar in non-ANTLR format is a great way to
figure out how somebody else decided to break down the phrases in a lan-
guage. At the very least, an existing grammar gives us a nice list of rule names
to use as a guide. A word of caution, though. I recommend against cutting
and pasting a grammar from a reference manual into ANTLR and massaging
it until it works. Treat it as a guide rather than a piece of code.

Reference manuals are often pretty loose for grammar clarity reasons,
meaning that the grammar recognizes lots of sentences not in the language.
Or, the grammar might be ambiguous, able to match the same input sequence
in more than one way. For example, a grammar might say that an expression
can invoke a constructor or call a function. The problem is that input like T(i)
could match both. Ideally, there would be no such ambiguities in our grammar.

Chapter 5. Designing Grammars • 60

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We really need a single interpretation of each input sentence to translate it
or perform some other task.

At the opposite extreme, grammars in reference manuals sometimes over-
specify the rules. There are some constraints that we should enforce after
parsing the input, rather than trying to enforce the constraints with grammat-
ical structure. For example, when working on Section 12.4, Parsing and Lexing
XML, on page 224, I scanned through the W3C XML language definition and
got lost in all the details. As a trivial example, the XML grammar explicitly
specifies where we must have whitespace in a tag and where it’s optional.
That’s good to know, but we can simply have a lexer strip out whitespace
inside of tags before sending it to the parser. Our grammar need not have
tests for whitespace everywhere.

The specification also says that the <?xml ...> tag can have two special
attributes: encoding and standalone. We need to know that constraint, but it’s
easier to allow any attribute name and then, after parsing, inspect the parse
tree to ensure all such constraints are satisfied. In the end, XML is just a
bunch of tags embedded in text, so its grammatical structure is fairly
straightforward. The only challenge is treating what’s inside and outside the
tags differently. We’ll look at this more in Section 12.3, Islands in the Stream,
on page 219.

Identifying the grammar rules and expressing their right sides in pseudocode
is challenging at first but gets easier and easier as you build grammars for
more languages. You’ll get lots of practice as you go through the examples in
this book.

Once we have pseudocode, we need to translate it to ANTLR notation to get
a working grammar. In the next section, we’ll define four language patterns
found in just about any language and see how they map to ANTLR constructs.
After that, we’ll figure out how to define the tokens referenced in our gram-
mars, such as integer and identifier. Remember that we’re looking at grammar
development fundamentals in this chapter. It will give us the solid footing we
need in order to tackle the real-world examples in the next chapter.

5.3 Recognizing Common Language Patterns with ANTLR Grammars

Now that we have a general top-down strategy for roughing out a grammar,
we need to focus on the common language patterns: sequence, choice, token
dependence, and nested phrase. We saw a few examples of these patterns in
the previous section, but now we’re going to see many more examples from
a variety of languages. As we go along, we’ll learn basic ANTLR notation by

report erratum • discuss

Recognizing Common Language Patterns with ANTLR Grammars • 61

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

expressing the specific patterns as formal grammar rules. Let’s start with the
most common language pattern.

Pattern: Sequence

The structure you’ll see most often in computer languages is a sequence of
elements, such as the sequence of methods in a class definition. Even simple
languages like the HTTP, POP, and SMTP network protocols exhibit the
sequence pattern. Protocols expect a sequence of commands. For example,
here’s the sequence to log into a POP server and get the first message:

USER parrt
PASS secret
RETR 1

Even the commands themselves are sequences. Most commands are a keyword
(reserved identifier), such as USER and RETR, followed by an operand and then
newline. For example, in a grammar we’d say that the retrieve command is
a keyword followed by an integer followed by a newline token. To specify such
a sequence in a grammar, we simply list the elements in order. In ANTLR
notation, the retrieve command is just sequence 'RETR' INT '\n', where INT repre-
sents the integer token type.

retr : 'RETR' INT '\n' ; // match keyword integer newline sequence

Notice that we can include any simple sequence of letters, such as keywords
or punctuation, directly as string literals like 'RETR' in the grammar. (We’ll
explore lexical structures such as INT in Section 5.5, Recognizing Common
Lexical Structures, on page 72.)

We use grammar rules to label language structures just like we label statement
lists as functions in a programming language. In this case, we’re labeling the
RETR sequence as the retr rule. Elsewhere in the grammar, we can refer to the
RETR sequence with the rule name as a shorthand.

Let’s look at an arbitrarily long sequence such as the simple list of integers
in a Matlab vector like [1 2 3]. As with a finite sequence, we want one element
to follow the next, but we can’t list all possible integer lists with rule fragments
like INT INT INT INT INT INT INT INT INT....

To encode a sequence of one or more elements, we use the + subrule operator.
For example, (INT)+ describes an arbitrarily long sequence of integers. As a
shorthand, INT+ is OK too. To specify that a list can be empty, we use the
zero-or-more * operator: INT*. This operator is analogous to a loop in a pro-
gramming language, which of course is how ANTLR-generated parsers
implement them.

Chapter 5. Designing Grammars • 62

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Variations on this pattern include the sequence with terminator and sequence
with separator. CSV files demonstrate both nicely. Here’s how we can express
the pseudocode grammar from the previous section in ANTLR notation:

file : (row '\n')* ; // sequence with a '\n' terminator
row : field (',' field)* ; // sequence with a ',' separator
field: INT ; // assume fields are just integers

Rule file uses the list with terminator pattern to match zero or more row '\n'
sequences. The '\n' token terminates each element of the sequence. Rule row
uses the list with separator pattern by matching a field followed by zero or
more ',' field sequences. The ',' separates the fields. row matches sequences like
1 and 1,2 and 1,2,3, and so on.

We see the same constructs in programming languages. For example, here’s
how to recognize statement sequences in a programming language like Java
where each statement is terminated by a semicolon:

stats : (stat ';')* ; // match zero or more ';'-terminated statements

And here is how to specify a comma-separated list of expressions such as
we’d find in a function call argument list:

exprList : expr (',' expr)* ;

Even ANTLR’s metalanguage uses sequence patterns. Here’s partially how
ANTLR expresses rule definition syntax in its own syntax:

// match 'rule-name :' followed by at least one alternative followed
// by zero or more alternatives separated by '|' symbols followed by ';'
rule : ID ':' alternative ('|' alternative)* ';' ;

Finally, there is a special kind of zero-or-one sequence, specified with the ?,
that we use to express optional constructs. In a Java grammar, for example,
we might find a sequence like ('extends' identifier)? that matches the optional
superclass specification. Similarly, to match an optional initializer on a variable
definition, we could say ('=' expr)?. The optional operator is kind of like a choice
between something and nothing. As a preview to the next section, ('=' expr)? is
the same as ('=' expr |).

Pattern: Choice (Alternatives)

A language with only one sentence would be pretty boring. Even the simplest
languages, such as network protocols, have multiple valid sentences such as
the USER and RETR commands of POP. This brings us to the choice pattern.
We’ve already seen a choice in the Java grammar pseudocode «nested class-
Definition or field or method» for rule member.

report erratum • discuss

Recognizing Common Language Patterns with ANTLR Grammars • 63

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

To express the notion of choice in a language, we use | as the “or” operator
in ANTLR rules to separate grammatical choices called alternatives or produc-
tions. Grammars are full of choices.

Returning to our CSV grammar, we can make a more flexible field rule by
allowing the choice of integers or strings.

field : INT | STRING ;

Looking through the grammars in the next chapter, we’ll find lots of choice
pattern examples, such as the list of type names in rule type from Section 6.4,
Parsing Cymbol, on page 98.

type: 'float' | 'int' | 'void' ; // user-defined types

In Section 6.3, Parsing DOT, on page 93, we’ll see the list of possible statements
in a graph description.

stmt: node_stmt
| edge_stmt
| attr_stmt
| id '=' id
| subgraph
;

Any time you find yourself saying “language structure x can be either this or
that,” then you’ve identified a choice pattern. Use | in rule x .

Grammar sequences and choices let us encode lots of language constructs,
but there are two key remaining patterns to look at: token dependency and
phrase nesting. They’re typically used together in grammars, but let’s start
with token dependencies in isolation for simplicity.

Pattern: Token Dependency

Previously, we used INT+ to express the nonempty sequence of integers in a
Matlab vector, [1 2 3]. To specify a vector with the surrounding square brackets,
we need a way to express dependencies between tokens. If we see one symbol
in a sentence, we must find its matching counterpart elsewhere in the sen-
tence. To express this with a grammar, we use a sequence that specifies both
symbols, usually enclosing or grouping other elements. In this case, we
completely specify vectors like this:

vector : '[' INT+ ']' ; // [1], [1 2], [1 2 3], ...

Glance at any nontrivial program in your favorite language, and you’ll see all
sorts of grouping symbols that must occur in pairs: (...), {...}, and [...]. From

Chapter 5. Designing Grammars • 64

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Section 6.4, Parsing Cymbol, on page 98, we find token dependencies between
the parentheses of a method call and the square brackets of an array index.

expr: expr '(' exprList? ')' // func call like f(), f(x), f(1,2)
| expr '[' expr ']' // array index like a[i], a[i][j]

...
;

We also see token dependencies between left and right parentheses in method
declarations.

examples/Cymbol.g4
functionDecl

: type ID '(' formalParameters? ')' block // "void f(int x) {...}"
;

formalParameters
: formalParameter (',' formalParameter)*
;

formalParameter
: type ID
;

The grammar from Section 6.2, Parsing JSON, on page 86 matches up curly
braces around object definitions such as { "name":"parrt", "passwd":"secret" }.

examples/JSON.g4
object

: '{' pair (',' pair)* '}'
| '{' '}' // empty object
;

pair: STRING ':' value ;

See Section 6.5, Parsing R, on page 102 for more examples of matching tokens.

Keep in mind that dependent symbols don’t necessarily have to match. C-
derived languages also have the a?b:c ternary operator where the ? sets up a
requirement to see : later in the phrase.

Also, just because we have matching tokens doesn’t necessarily imply a nested
phrase. For example, a vector might not allow nested vectors. In general, though,
subphrases enclosed in matching symbols typically nest. We get constructs like
a[(i)] and {while (b) {i=1;}}. This brings us to the final language pattern we’re likely
to need.

Pattern: Nested Phrase

A nested phrase has a self-similar language structure, one whose subphrases
conform to that same structure. Expressions are the quintessential self-sim-
ilar language structure and are made up of nested subexpressions separated

report erratum • discuss

Recognizing Common Language Patterns with ANTLR Grammars • 65

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

by operators. Similarly, a while’s code block is a code block nested within an
outer code block. We express self-similar language structures using recursive
rules in grammars. So, if the pseudocode for a rule references itself, we are
going to need a recursive (self-referencing) rule.

Let’s see how nesting works for code blocks. A while statement is the keyword
while followed by a condition expression in parentheses followed by a statement.
We can also treat multiple statements as a single block statement by wrapping
them in curly braces. Expressing that grammatically looks like this:

stat: 'while' '(' expr ')' stat // match WHILE statement
| '{' stat* '}' // match block of statements in curlies

... // and other kinds of statements
;

The looping statement, stat, of the while can be a single statement or a group
of statements if we enclose them in {...}. Rule stat is directly recursive because
it refers to itself in the first (and second) alternatives. If we moved the second
alternative to its own rule, rules stat and block would be mutually indirectly
recursive.

stat: 'while' '(' expr ')' stat // match WHILE statement
| block // match a block of statements

... // and other kinds of statements
;

block: '{' stat* '}' ; // match block of statements in curlies

Most nontrivial languages have multiple self-similar constructs, leading to
lots of recursive rules. Let’s look at an expression rule for a simple language
that has just three kinds of expressions: indexed array references, parenthe-
sized expressions, and integers. Here’s how we would express that in ANTLR
notation:

expr: ID '[' expr ']' // a[1], a[b[1]], a[(2*b[1])]
| '(' expr ')' // (1), (a[1]), (((1))), (2*a[1])
| INT // 1, 94117
;

Notice how the recursion happens naturally. The index component of an array
index expression is itself an expression, so we just reference expr in that
alternative. The fact that the array index alternative is itself an expression
shouldn’t bother us. The nature of the language construct dictates the use
of a rule reference that just happens to be recursive.

Here are the parse trees for two sample inputs:

Chapter 5. Designing Grammars • 66

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[expr

)

1

]

(expr

a

expr

1

a expr][

expr

a[1] (a[1])

As we saw in Section 2.1, Let's Get Meta!, on page 9, the internal tree nodes
are rule references, and the leaves are token references. A path from the root
of the tree to any node represents the rule invocation stack for that element
(or call stack for an ANTLR-generated recursive-descent parser). Paths repre-
senting recursive, nested subtrees have multiple references to the same rule.
I like to think of the rule nodes as labeling the subtrees underneath. The root
is expr, so the entire tree is an expression. The subtree with expr before 1 labels
that integer as an expression.

Not all languages have expressions, such as data formats, but most languages
you’ll run into have fairly complex expressions (see Section 6.5, Parsing R,
on page 102). Moreover, expression grammar specifications are not always
obvious, so it’s worth spending some time digging into the details of recognizing
expressions. We’ll do that next.

For future reference, here’s a table summarizing ANTLR’s core grammar
notation:

DescriptionSyntax

Match token, rule reference, or subrule x .x

Match a sequence of rule elements.x y ... z

Subrule with multiple alternatives.(... | ... | ...)

Match x or skip it.x ?

Match x zero or more times.x *

Match x one or more times.x +

Define rule r.r : ... ;

Define rule r with multiple alternatives.r : ... | ... | ... ;

Table 1—ANTLR Core Notation

And here is a table summarizing what we’ve learned so far about common
computer language patterns:

report erratum • discuss

Recognizing Common Language Patterns with ANTLR Grammars • 67

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionPattern Name

This is a finite or arbitrarily long sequence of tokens or
subphrases. Examples include variable declarations (type

Sequence

followed by identifier) and lists of integers. Here are some
sample implementations:

x y ... z // x followed by y, ..., z
'[' INT+ ']' // Matlab vector of integers

This is an arbitrarily long, potentially empty sequence of tokens
or subphrases separated by a token, usually a semicolon or

Sequence with terminator

newline. Examples include statement lists from C-like lan-
guages and rows of data terminated with newlines. Here are
some sample implementations:

(statement ';')* // Java statement list
(row '\n')* // Lines of data

This is a nonempty arbitrarily long sequence of tokens or
subphrases separated by a token, usually a comma, semicolon,

Sequence with separator

or period. Examples include function argument definition lists,
function call argument lists, languages where statements are
separated but not terminated, and directory names. Here are
some sample implementations:

expr (',' expr)* // function call arguments
(expr (',' expr)*)? // optional function call arguments
'/'? name ('/' name)* // simplified directory name
stat ('.' stat)* // SmallTalk statement list

This is a set of alternative phrases. Examples include the dif-
ferent kinds of types, statements, expressions, or XML tags.
Here are some sample implementations:

Choice

type : 'int' | 'float' ;
stat : ifstat | whilestat | 'return' expr ';' ;
expr : '(' expr ')' | INT | ID ;
tag : '<' Name attribute* '>' | '<' '/' Name '>' ;

The presence of one token requires the presence of one or more
subsequent tokens. Examples include matching parentheses,

Token dependency

curly braces, square bracket, and angle brackets. Here are
some sample implementations:

'(' expr ')' // nested expression
ID '[' expr ']' // array index
'{' stat* '}' // statements grouped in curlies
'<' ID (',' ID)* '>' // generic type specifier

Chapter 5. Designing Grammars • 68

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionPattern Name

This is a self-similar language structure. Examples include
expressions, nested Java classes, nested code blocks, and

Nested phrase

nested Python function definitions. Here are some sample
implementations:

expr : '(' expr ')' | ID ;
classDef : 'class' ID '{' (classDef|method|field) '}' ;

5.4 Dealing with Precedence, Left Recursion, and Associativity

Expressions have always been a hassle to specify with top-down grammars
and to recognize by hand with recursive-descent parsers, first because the
most natural grammar is ambiguous and second because the most natural
specification uses a special kind of recursion called left recursion. We’ll discuss
the latter in detail later, but for now, keep in mind that top-down grammars
and parsers cannot deal with left recursion in their classic form.

To illustrate the problem, imagine a simple arithmetic expression language
that has multiply and addition operators and integer “atoms.” Expressions
are self-similar, so it’s natural for us to say that a multiplicative expression
is two subexpressions joined by the * operator. Similarly, an additive expres-
sion is two subexpressions joined by a +. We can also have simple integers
as expressions. Literally encoding this as a grammar leads to the following
reasonable-looking rule:

expr : expr '*' expr // match subexpressions joined with '*' operator
| expr '+' expr // match subexpressions joined with '+' operator
| INT // matches simple integer atom
;

The problem is that this rule is ambiguous for some input phrases. In other
words, this rule can match a single input stream in more than one way, which
you might recall from Section 2.3, You Can't Put Too Much Water into a
Nuclear Reactor, on page 13. It’s fine for simple integers and for single-operator
expressions such as 1+2 and 1*2 because there is only one way to match them.
For example, the rule can match 1+2 only using the second alternative, as
shown by the left parse tree in the diagram in Figure 3, Parse tree interpreta-
tions, on page 70

The problem is that the rule as specified can interpret input such as 1+2*3 in
the two ways depicted by the middle and right parse trees. They’re different
because the middle tree says to add 1 to the result of multiplying 2 and 3,
whereas the tree on the right multiplies 3 by the result of adding 1 and 2.

report erratum • discuss

Dealing with Precedence, Left Recursion, and Associativity • 69

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

expr

1 + 2

expr

1 + expr

2 * 3

expr

3*expr

1 + 2

1+2 1+2*3 1+2*3

Figure 3—Parse tree interpretations

This is a question of operator precedence, and conventional grammars simply
have no way to specify precedence. Most grammar tools, such as Bison,1 use
extra notation to specify the operator precedence.

Instead, ANTLR resolves ambiguities in favor of the alternative given first,
implicitly allowing us to specify operator precedence. Rule expr has the multi-
plication alternative before the addition alternative, so ANTLR resolves the
operator ambiguity for 1+2*3 in favor of the multiplication.

By default, ANTLR associates operators left to right as we’d expect for * and
+. Some operators like exponentiation group right to left, though, so we have
to manually specify the associativity on the operator token using option assoc.
Here’s an expression rule that properly interprets input like 2^3^4 as 2^(3^4):

expr : expr '^'<assoc=right> expr // ^ operator is right associative
| INT
;

The following parse trees illustrates the difference between left and right
associative versions of ̂ . The parse tree on the right is the usual interpretation,
but language designers are free to use either associativity.

expr

3^expr

1 ^ 2

1^2^3

expr

1 ^ expr

2 ^ 3

1^2^3

To combine all three operators in a single rule, we place the ^ alternative
before the others because it has higher precedence than * and + (1+2^3 is 9).

1. http://dinosaur.compilertools.net/bison/bison_8.html#SEC71

Chapter 5. Designing Grammars • 70

report erratum • discusswww.it-ebooks.info

http://dinosaur.compilertools.net/bison/bison_8.html#SEC71
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

expr : expr '^'<assoc=right> expr // ^ operator is right associative
| expr '*' expr // match subexpressions joined with '*' operator
| expr '+' expr // match subexpressions joined with '+' operator
| INT // matches simple integer atom
;

Readers familiar with ANTLR v3 have been waiting patiently for me to point
out that ANTLR, like all conventional top-down parser generators, cannot
handle left-recursive rules. However, one of ANTLR v4’s major improvements
is that it can now handle direct left recursion. A left-recursive rule is one that
either directly or indirectly invokes itself on the left edge of an alternative.
The expr rule is directly left recursive because everything but the INT alternative
starts with a reference to the expr rule itself. (It’s also right recursive because
of the expr references on the right edges of some alternatives.)

While ANTLR v4 can handle direct left recursion, it can’t handle indirect left
recursion. That means we can’t factor expr into the grammatically equivalent
rules.

expr : expo // indirectly invokes expr left recursively via expo
| ...
;

expo : expr '^'<assoc=right> expr ;

Precedence Climbing Expression Parsing

Experienced compiler writers often build recursive-descent parsers by hand to squeeze
out every last drop of performance and to allow complete control over error recovery.
Instead of writing code for the long chain of expression rules, however, they often use
operator precedence parsers.a

ANTLR uses a similar but more powerful strategy than operator precedence that follows
work done by Keith Clarkeb from 1986. Theodore Norvell subsequently coined the
term precedence climbing.c Similarly, ANTLR replaces direct left recursion with a
predicated loop that compares the precedence of the previous and next operators.
We’ll get into predicates in Chapter 11, Altering the Parse with Semantic Predicates,
on page 189.

a. http://en.wikipedia.org/wiki/Operator-precedence_parser
b. http://antlr.org/papers/Clarke-expr-parsing-1986.pdf
c. http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

To recognize expressions with ANTLR v3, we had to unravel the left recursion
we saw in the earlier expr into multiple rules, one for each precedence level.
For example, we’d use rules like the following for expressions with multiplica-
tion and addition operators:

report erratum • discuss

Dealing with Precedence, Left Recursion, and Associativity • 71

www.it-ebooks.info

http://en.wikipedia.org/wiki/Operator-precedence_parser
http://antlr.org/papers/Clarke-expr-parsing-1986.pdf
http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

expr : addExpr ;
addExpr : multExpr ('+' multExpr)* ;
multExpr: atom ('*' atom)* ;
atom : INT ;

Expressions for languages such as C and Java end up with about fifteen such
rules, which is a hassle whether we’re building a top-down grammar or
building a recursive-descent parser by hand.

ANTLR v4 makes short work of (directly) left-recursive expression rules. Not
only is the new mechanism more efficient, expression rules are much smaller
and easier to understand. For example, in a Java grammar, the number of
lines dedicated to expressions dropped in half (from 172 to 91 lines).

In practice, we can handle all of the language structures we care about with
direct left recursion. For example, here’s a rule that matches a subset of the
C declarator language including input such as *(*a)[][]:

decl : decl '[' ']' // match [] suffixes using direct left-recursion
| '*' decl // *x, *x[], **x
| '(' decl ')' // (x), (x[]), (*x)[]
| ID
;

To learn more about how ANTLR supports direct left recursion (using grammar
transformations), please see Chapter 14, Removing Direct Left Recursion, on
page 247.

At this point, we’ve studied the common patterns found in computer languages
and figured out how to express them in ANTLR notation. But, before we can dive
into some complete examples, we need to figure out how to describe the tokens
referenced in our grammar rules. Just as there are a few key grammatical language
patterns, we’ll find that there are some extremely common lexical structures.
Creating a complete grammar is a matter of combining grammatical rules from
this section and lexical rules from the next section.

5.5 Recognizing Common Lexical Structures

Computer languages look remarkably similar lexically. For example, if I
scramble up the order to obscure grammatical information, tokens) 10 (f
could be combined into valid phrases from the earliest languages to the most
recent. Fifty years ago, we’d see (f 10) in LISP and f(10) in Algol. Of course, f(10)
is also valid in virtually all programming languages from Prolog to Java to
the new Go language.2 Lexically, then, functional, procedural, declarative,
and object-oriented languages look pretty much the same. Amazing!

2. http://golang.org/

Chapter 5. Designing Grammars • 72

report erratum • discusswww.it-ebooks.info

http://golang.org/
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

That’s great because we have to learn only how to describe identifiers and
integers once and, with little variation, apply them to most programming
languages. As with parsers, lexers use rules to describe the various language
constructs. We get to use essentially the same notation. The only difference
is that parsers recognize grammatical structure in a token stream and lexers
recognize grammatical structure in a character stream.

Since lexing and parsing rules have similar structures, ANTLR allows us to
combine both in a single grammar file. But since lexing and parsing are two
distinct phases of language recognition, we must tell ANTLR which phase is
associated with each rule. We do this by starting lexer rule names with
uppercase letters and parser rule names with lowercase letters. For example,
ID is a lexical rule name, and expr is a parser rule name.

When starting a new grammar, I typically cut and paste rules from an existing
grammar, such as Java,3 for the common lexical constructs: identifiers,
numbers, strings, comments, and whitespace. A few tweaks, and I’m up and
running. Almost all languages, even nonprogramming languages like XML
and JSON, have a variation of those tokens. For example, despite being very
distinct grammatically, a lexer for C would have no problem tokenizing the
following JSON:

{
"title":"Cat wrestling",
"chapters":[{"Intro":"..."}, ...]

}

As another example, consider block comments. In Java, they are bracketed
by /* ... */, and in XML, comments are bracketed by <!-- ... -->, but they are more
or less the same lexical construct except for the start and stop symbols.

For keywords, operators, and punctuation, we don’t need lexer rules because
we can directly reference them in parser rules in single quotes like 'while', '*',
and '++'. Some developers prefer to use lexer rule references such as MULT
instead of literal '*'. That way, they can change the multiply operator character
without altering the references to MULT in the parser rules. Having both the
literal and lexical rule MULT is no problem; they both result in the same token
type.

To demonstrate what lexical rules look like, let’s build simple versions of the
common tokens, starting with our friend the humble identifier.

3. http://www.antlr.org/grammar/java

report erratum • discuss

Recognizing Common Lexical Structures • 73

www.it-ebooks.info

http://www.antlr.org/grammar/java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Matching Identifiers

In grammar pseudocode, a basic identifier is a nonempty sequence of upper-
case and lowercase letters. Using our newfound skills, we know to express
the sequence pattern using notation (...)+. Because the elements of the
sequence can be either uppercase or lowercase letters, we also know that
we’ll have a choice operator inside the subrule.

ID : ('a'..'z'|'A'..'Z')+ ; // match 1-or-more upper or lowercase letters

The only new ANTLR notation here is the range operator: 'a'..'z' means any
character from a to z. That is literally the ASCII code range from 97 to 122.
To use Unicode code points, we need to use '\uXXXX' literals where XXXX is the
hexadecimal value for the Unicode character code point value.

As a shorthand for character sets, ANTLR supports the more familiar regular
expression set notation.

ID : [a-zA-Z]+ ; // match 1-or-more upper or lowercase letters

Rules such as ID sometimes conflict with other lexical rules or literals refer-
enced in the grammar such as 'enum'.

grammar KeywordTest;
enumDef : 'enum' '{' ... '}' ;
...
FOR : 'for' ;
...
ID : [a-zA-Z]+ ; // does NOT match 'enum' or 'for'

Rule ID could also match keywords such as enum and for, which means there’s
more than one rule that could match the same string. To make this clearer,
consider how ANTLR handles combined lexer/parser grammars such as this.
ANTLR collects and separates all of the string literals and lexer rules from
the parser rules. Literals such as 'enum' become lexical rules and go immedi-
ately after the parser rules but before the explicit lexical rules.

ANTLR lexers resolve ambiguities between lexical rules by favoring the rule
specified first. That means your ID rule should be defined after all of your
keyword rules, like it is here relative to FOR. ANTLR puts the implicitly gener-
ated lexical rules for literals before explicit lexer rules, so those always have
priority. In this case, 'enum' is given priority over ID automatically.

Because ANTLR reorders the lexical rules to occur after the parser rules, the
following variation on KeywordTest results in the same parser and lexer:

Chapter 5. Designing Grammars • 74

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

grammar KeywordTestReordered;
FOR : 'for' ;
ID : [a-zA-Z]+ ; // does NOT match 'enum' or 'for'
...
enumDef : 'enum' '{' ... '}' ;
...

This definition of an identifier doesn’t allow numbers, but you can peek ahead
to Section 6.3, Parsing DOT, on page 93, Section 6.4, Parsing Cymbol, on page
98, and Section 6.5, Parsing R, on page 102 for full-blown ID rules.

Matching Numbers

Describing integer numbers such as 10 is easy because it’s just a sequence
of digits.

INT : '0'..'9'+ ; // match 1 or more digits

or

INT : [0-9]+ ; // match 1 or more digits

Floating-point numbers are much more complicated, unfortunately, but we
can make a simplified version easily if we ignore exponents. (See Section 6.5,
Parsing R, on page 102 for lexical rules that match full floating-point numbers
and even complex numbers like 3.2i.) A floating-point number is a sequence
of digits followed by a period and then optionally a fractional part, or it starts
with a period and continues with a sequence of digits. A period by itself is
not legal. Our floating-point rule therefore uses a choice and a few sequence
patterns.

FLOAT: DIGIT+ '.' DIGIT* // match 1. 39. 3.14159 etc...
| '.' DIGIT+ // match .1 .14159
;

fragment
DIGIT : [0-9] ; // match single digit

Here we’re also using a helper rule, DIGIT, so we don’t have to write [0-9]
everywhere. By prefixing the rule with fragment, we let ANTLR know that the
rule will be used only by other lexical rules. It is not a token in and of itself.
This means that we could not reference DIGIT from a parser rule.

Matching String Literals

The next token that computer languages tend to have in common is the string
literal like "Hello". Most use double quotes, but some use single quotes or even
both (Python). Regardless of the choice of delimiters, we match them using a

report erratum • discuss

Recognizing Common Lexical Structures • 75

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

rule that consumes everything between the delimiters. In grammar pseu-
docode, a string is a sequence of any characters between double quotes.

STRING : '"' .*? '"' ; // match anything in "..."

The dot wildcard operator matches any single character. Therefore, .* would
be a loop that matches any sequence of zero or more characters. Of course,
that would consume until the end of file, which is not very useful. Instead,
ANTLR provides support for nongreedy subrules using standard regular
expression notation (the ? suffix). Nongreedy means essentially to “scarf
characters until you see what follows the subrule in the lexer rule.” To be
more precise, nongreedy subrules match the fewest number of characters
while still allowing the entire surrounding rule to match. See Section 15.6,
Wildcard Operator and Nongreedy Subrules, on page 283 for more details. In
contrast, the .* is considered greedy because it greedily consumes characters
that match the inside of the loop (wildcard in this case). If .*? is confusing,
don’t worry about it. Just remember it as a pattern for matching stuff inside
quotes or other delimiters. We’ll see nongreedy loops again shortly when we
look at comments.

Our STRING rule isn’t quite good enough yet because it doesn’t allow double
quotes inside strings. To support that, most languages define escape sequences
starting with a backslash. To get a double quote inside a double-quoted string,
we use \". To support the common escape characters, we need something like
the following:

STRING: '"' (ESC|.)*? '"' ;
fragment
ESC : '\\"' | '\\\\' ; // 2-char sequences \" and \\

ANTLR itself needs to escape the escape character, so that’s why we need \\
to specify the backslash character.

The loop in STRING now matches either an escape character sequence, by
calling fragment rule ESC, or any single character via the dot wildcard. The *?
subrule operator terminates the (ESC|.)*? loop upon seeing what follows, an
unescaped double-quote character.

Matching Comments and Whitespace

When a lexer matches the tokens we’ve defined so far, it emits them via the
token stream to the parser. The parser then checks the grammatical structure
of the stream. But when the lexer matches comment and whitespace tokens,
we’d like it to toss them out. That way, the parser doesn’t have to worry about
matching optional comments and whitespace everywhere. For example, the

Chapter 5. Designing Grammars • 76

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

following parser rule would be very awkward and error-prone where WS is a
whitespace lexical rule:

assign : ID (WS|COMMENT)? '=' (WS|COMMENT)? expr (WS|COMMENT)? ;

Defining these discarded tokens is the same as for nondiscarded tokens. We
just have to indicate that the lexer should throw them out using the skip
command. For example, here is how to match both single-line and multiline
comments for C-derived languages:

LINE_COMMENT : '//' .*? '\r'? '\n' -> skip ; // Match "//" stuff '\n'
COMMENT : '/*' .*? '*/' -> skip ; // Match "/*" stuff "*/"

In LINE_COMMENT, .*? consumes everything after // until it sees a newline
(optionally preceded by a carriage return to match Windows-style newlines).
In COMMENT, .*? consumes everything after /* and before the terminating */.

The lexer accepts a number of commands following the -> operator; skip is just
one of them. For example, we have the option to pass these tokens to the
parser on a “hidden channel” by using the channel command. See Section 12.1,
Broadcasting Tokens on Different Channels, on page 204 for more on token
channels.

Let’s deal with whitespace, our final common token. Most programming lan-
guages treat whitespace characters as token separators but otherwise ignore
them. (Python is an exception because it uses whitespace for particular syntax
purposes: newlines to terminate commands and indent level, with initial tabs
or spaces to indicate nesting level.) Here is how to tell ANTLR to throw out
whitespace:

WS : (' '|'\t'|'\r'|'\n')+ -> skip ; // match 1-or-more whitespace but discard

or

WS : [\t\r\n]+ -> skip ; // match 1-or-more whitespace but discard

When newline is both whitespace to be ignored and the command terminator,
we have a problem. Newline is context-sensitive. In one grammatical context,
we should throw out newlines, and in another, we should pass it to the
parser so that it knows a command has finished. For example, in Python, f()
followed by newline executes the code, calling f(). But we could also insert an
extra newline between the parentheses. Python waits until the newline after
the) before executing the call.

$ python➾
>>> def f(): print "hi"➾

...❮
>>> f()➾

report erratum • discuss

Recognizing Common Lexical Structures • 77

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

hi❮
>>> f(➾
...)➾

hi❮

For a detailed discussion of the problem and solutions, see Fun with Python
Newlines, on page 214.

So, now we know how to match basic versions of the most common lexical
constructs: identifiers, numbers, strings, comments, and whitespace. Believe
it or not, that’s a great start on a lexer for even a big programming language.
Here’s a lexer starter kit we can use as a reference later:

Description and ExamplesToken Category

The easiest way to handle operators and punctuation is to
directly reference them in parser rules.

Punctuation

call : ID '(' exprList ')' ;

Some programmers prefer to define token labels such as LP
(left parenthesis) instead.

call : ID LP exprList RP ;
LP : '(' ;
RP : ')' ;

Keywords are reserved identifiers, and we can either reference
them directly or define token types for them.

Keywords

returnStat : 'return' expr ';'

Identifiers look almost the same in every language, with some
variation about what the first character can be and whether
Unicode characters are allowed.

Identifiers

ID : ID_LETTER (ID_LETTER | DIGIT)* ; // From C language
fragment ID_LETTER : 'a'..'z'|'A'..'Z'|'_' ;
fragment DIGIT : '0'..'9' ;

These are definitions for integers and simple floating-point
numbers.

Numbers

INT : DIGIT+ ;
FLOAT

: DIGIT+ '.' DIGIT*
| '.' DIGIT+
;

Chapter 5. Designing Grammars • 78

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Description and ExamplesToken Category

Match double-quoted strings.Strings

STRING : '"' (ESC | .)*? '"' ;
fragment ESC : '\\' [btnr"\\] ; // \b, \t, \n etc...

Match and discard comments.Comments

LINE_COMMENT : '//' .*? '\n' -> skip ;
COMMENT : '/*' .*? '*/' -> skip ;

Match whitespace in the lexer and throw it out.Whitespace

WS : [\t\n\r]+ -> skip ;

At this point, we have a strategy to go from sample input files to parser and
lexer rules and are ready to tackle the examples in the next chapter. Before
we move on, though, there are two important issues to consider. First, it’s
not always obvious where to draw the line between what we match in the
parser and what we match in the lexer. Second, ANTLR places a few con-
straints on our grammar rules that we should know about.

5.6 Drawing the Line Between Lexer and Parser

Because ANTLR lexer rules can use recursion, lexers are technically as pow-
erful as parsers. That means we could match even grammatical structure in
the lexer. Or, at the opposite extreme, we could treat characters as tokens
and use a parser to apply grammatical structure to a character stream. (These
are called scannerless parsers. See code/extras/CSQL.g4 for a grammar matching
a small mix of C + SQL.)

Where to draw the line between the lexer and the parser is partially a function
of the language but also a function of the intended application. Fortunately,
a few rules of thumb will get us pretty far.

• Match and discard anything in the lexer that the parser does not need to
see at all. Recognize and toss out things like whitespace and comments
for programming languages. Otherwise, the parser would have to constant-
ly check to see whether there are comments or whitespace in between
tokens.

• Match common tokens such as identifiers, keywords, strings, and numbers
in the lexer. The parser has more overhead than the lexer, so we shouldn’t
burden the parser with, say, putting digits together to recognize integers.

report erratum • discuss

Drawing the Line Between Lexer and Parser • 79

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

• Lump together into a single token type those lexical structures that the
parser does not need to distinguish. For example, if our application treats
integer and floating-point numbers the same, then lump them together
as token type NUMBER. There’s no point in sending separate token types
to the parser.

• Lump together anything that the parser can treat as a single entity. For
example, if the parser doesn’t care about the contents of an XML tag, the
lexer can lump everything between angle brackets into a single token type
called TAG.

• On the other hand, if the parser needs to pull apart a lump of text to
process it, the lexer should pass the individual components as tokens to
the parser. For example, if the parser needs to process the elements of
an IP address, the lexer should send individual tokens for the IP compo-
nents (integers and periods).

When we say that the parser doesn’t need to distinguish between certain
lexical structures or doesn’t care about what’s inside a structure, we really
mean that our application doesn’t care. Our application performs the same
action or translation on those lexical structures.

To see how the intended application affects what we match in the lexer vs.
the parser, imagine processing a log file from a web server that has one record
per line. We’ll gradually increase the application requirements to see how it
shifts the boundary between the lexer and the parser. Let’s assume each row
has a requesting IP address, HTTP protocol command, and result code. Here’s
a sample log entry:

192.168.209.85 "GET /download/foo.html HTTP/1.0" 200

Our brain naturally picks out the various lexical elements, but if all we want
to do is count how many lines there are in the file, we can ignore everything
but the sequence of newline characters.

file : NL+ ; // parser rule matching newline (NL) sequence
STUFF : ~'\n'+ -> skip ; // match and discard anything but a '\n'
NL : '\n' ; // return NL to parser or other invoking code

The lexer doesn’t have to recognize much in the way of structure, and the
parser matches a sequence of newline tokens. (The ~x operator matches
anything but x.)

Next, let’s say that we need to collect a list of IP addresses from the log file.
This means we need a rule to recognize the lexical structure of an IP address,
and we might as well provide lexer rules for the other record elements.

Chapter 5. Designing Grammars • 80

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

IP : INT '.' INT '.' INT '.' INT ; // 192.168.209.85
INT : [0-9]+ ; // match IP octet or HTTP result code
STRING: '"' .*? '"' ; // matches the HTTP protocol command
NL : '\n' ; // match log file record terminator
WS : ' ' -> skip ; // ignore spaces

With a complete set of tokens, we can make parser rules that match the
records in a log file.

file : row+ ; // parser rule matching rows of log file
row : IP STRING INT NL ; // match log file record

Stepping up our processing needs a little bit, let’s say we need to convert the
text IP addresses to 32-bit numbers. With convenient library functions like
split('.'), we could pass IP addresses as strings to the parser and process them
there. But, it’s better to have the lexer match the IP address lexical structure
and pass the components to the parser as tokens.

file : row+ ; // parser rule matching rows of log file
row : ip STRING INT NL ; // match log file record
ip : INT '.' INT '.' INT '.' INT ; // match IPs in parser

INT : [0-9]+ ; // match IP octet or HTTP result code
STRING: '"' .*? '"' ; // matches the HTTP protocol command
NL : '\n' ; // match log file record terminator
WS : ' ' -> skip ; // ignore spaces

Switching lexer rule IP to parser rule ip shows how easily we can shift the
dividing line. (Converting the four INT tokens to a 32-bit number would require
some application code embedded in the grammar, which we haven’t looked
at yet in depth, so we’ll leave them out.)

If the requirements call for processing the contents of the HTTP protocol
command string, we would follow a similar thought process. If our application
doesn’t need to examine the parts of the string, then the lexer can pass the
whole string to the parser as a single token. But, if we need to pull out the
various pieces, it’s better to have the lexer recognize those pieces and pass
the components to the parser.

It doesn’t take long to get a good feel for drawing the line according to a lan-
guage’s symbols and the needs of an application. The examples in the next
chapter will help you internalize the rules of thumb from this section. Then,
with that solid foundation, we’ll examine a few nasty lexical problems in
Chapter 12, Wielding Lexical Black Magic, on page 203. For example, Java
compilers need to both ignore and process Javadoc comments, and XML files
have different lexical structures inside and outside of tags.

report erratum • discuss

Drawing the Line Between Lexer and Parser • 81

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

In this chapter, we learned how to work from a representative sample of the
language, or language documentation, to create grammar pseudocode and
then a formal grammar in ANTLR notation. We also studied the common
language patterns: sequence, choice, token dependency, and nested phrase.
In the lexical realm, we looked at implementations for the most common
tokens: identifiers, numbers, strings, comments, and whitespace. Now it’s
time to put this knowledge to work building grammars for some real-world
languages.

Chapter 5. Designing Grammars • 82

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 6

Exploring Some Real Grammars
In the previous chapter, we studied common lexical and grammatical struc-
tures and learned how to express them as snippets of ANTLR grammars. Now
it’s time to put that knowledge to use building some real-world grammars.
Our primary goal is to learn how to assemble full grammars by sifting through
reference manuals, sample input files, and existing non-ANTLR grammars.
We’ll tackle five languages, ramping up gradually in complexity. You don’t
have to build all of them now. Just work through the ones you’re comfortable
with and come back as you encounter more complicated problems in practice.
Also feel free to pop back to look at the patterns and ANTLR snippets in the
previous chapter.

The first language we’ll look at is the comma-separated-value (CSV) format
used by spreadsheets and databases. CSV is a great place to start because
it’s simple and yet widely applicable. The second language is also a data for-
mat, called JSON,1 that has nested data elements, which lets us explore the
use of rule recursion in a real language.

Next, we’ll look at a declarative language called DOT2 for describing graphs
(networks). In a declarative language, we express logical constructions without
specifying control flow. DOT lets us explore more complicated lexical struc-
tures, such as case-insensitive keywords.

Our fourth language is a simple non-object-oriented programming language
called Cymbol (also discussed in Chapter 6 of Language Implementation
Patterns [Par09]). It’s a prototypical grammar we can use as a reference or
starting point for other imperative programming languages (those composed
of functions, variables, statements, and expressions).

1. http://www.json.org
2. http://www.graphviz.org

report erratum • discusswww.it-ebooks.info

http://www.json.org
http://www.graphviz.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Finally, we’ll build a grammar for the R functional programming language.3

(Functional languages compute by evaluating expressions.) R is a statistical
programming language increasingly used for data analysis. I chose R because
its grammar consists primarily of a jumbo expression rule. It’s a great
opportunity to reinforce our understanding of operator precedence and
associativity for a real language.

Once we have a firm grip on building grammars, we can move beyond recog-
nition and get down to the business of triggering actions when the application
sees input phrases of interest. In the next chapter, we’ll create parser listeners
that build data structures, manage symbol tables that track variable and
function definitions, and perform language translations.

We begin with a grammar for CSV files.

6.1 Parsing Comma-Separated Values

While we have already seen a basic CSV grammar in Pattern: Sequence, on
page 62, let’s beef it up with the notion of a header row and allow empty
columns. Here’s a representative input file:

examples/data.csv
Details,Month,Amount
Mid Bonus,June,"$2,000"
,January,"""zippo"""
Total Bonuses,"","$5,000"

Header rows are no different from regular rows; we simply interpret the column
value as the column header name. Rather than using a row+ ANTLR fragment
to match rows as well as the header row, we match it separately. When
building a real application based upon this grammar, we’d probably want to
treat the header differently. This way, we can get a handle on the first special
row. Here’s the first part of the grammar:

examples/CSV.g4
grammar CSV;

file : hdr row+ ;
hdr : row ;

Note that we’ve introduced an extra rule called hdr for clarity. Grammatically
it’s just a row, but we’ve made its role clearer by separating it out. Compare
this to using just row+ or row row* on the right-side rule file.

3. http://www.r-project.org

Chapter 6. Exploring Some Real Grammars • 84

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/data.csv
http://media.pragprog.com/titles/tpantlr2/code/examples/CSV.g4
http://www.r-project.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Rule row is the same as before: a list of fields separated by commas and termi-
nated by a newline.

examples/CSV.g4
row : field (',' field)* '\r'? '\n' ;

To make our fields more flexible than they were in the previous chapter, let’s
allow arbitrary text, strings, and even empty fields in between commas.

examples/CSV.g4
field

: TEXT
| STRING
|
;

The token definitions aren’t too bad. TEXT tokens are a sequence of characters
until we hit the next comma field separator or the end of the line. Strings are
any characters in between double quotes. Here are the two token definitions
we’ve used so far:

examples/CSV.g4
TEXT : ~[,\n\r"]+ ;
STRING : '"' ('""'|~'"')* '"' ; // quote-quote is an escaped quote

To get a double quote inside a double-quoted string, the CSV format generally
uses two double quotes in a row. That’s what the ('""'|~'"')* subrule does in
rule STRING. We can’t use a nongreedy loop with the wildcard, ('""'|.)*?, because
it would stop at the first " it saw after the start of the string. Input like "x""y"
would match two strings, not one string with "" inside it. Remember that
nongreedy subrules match the fewest characters possible that still results in
a match for the surrounding rule.

Before testing our parser rules, let’s take a look at the token stream just to
make sure that our lexer breaks up the character stream properly. Using
TestRig via alias grun with option -tokens, we get the following:

$ antlr4 CSV.g4➾
$ javac CSV*.java➾
$ grun CSV file -tokens data.csv➾
[@0,0:6='Details',<4>,1:0]❮
[@1,7:7=',',<1>,1:7]
[@2,8:12='Month',<4>,1:8]
[@3,13:13=',',<1>,1:13]
[@4,14:19='Amount',<4>,1:14]
[@5,20:20='\n',<2>,1:20]
[@6,21:29='Mid Bonus',<4>,2:0]
[@7,30:30=',',<1>,2:9]
[@8,31:34='June',<4>,2:10]

report erratum • discuss

Parsing Comma-Separated Values • 85

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/CSV.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/CSV.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[@9,35:35=',',<1>,2:14]
[@10,36:43='"$2,000"',<5>,2:15]
[@11,44:44='\n',<2>,2:23]
[@12,45:45=',',<1>,3:0]
[@13,46:52='January',<4>,3:1]
...

Those tokens look fine. The punctuation, text, and strings all come through
as expected.

Now, let’s see how our grammar recognizes grammatical structure in the
input stream. Using option -tree, the test rig prints out a text form of the parse
tree (cleaned up for the book).

$ grun CSV file -tree data.csv➾
(file❮
(hdr (row (field Details) , (field Month) , (field Amount) \n))
(row (field Mid Bonus) , (field June) , (field "$2,000") \n)
(row field , (field January) , (field """zippo""") \n)
(row (field Total Bonuses) , (field "") , (field "$5,000") \n)

)

The root node represents everything that start rule file matched. It has a
number of rows as children, starting with the header row. Here’s what the
parse tree looks like visually (obtained with the -ps file.ps option):

\n

row

file

field ,

Amount

field , field

"""zippo"""

field

Total Bonuses

,

row

field field,\n \n

row

fieldfield

, field

Mid Bonus

field

"$5,000"

\n

"$2,000", January ""June

,

hdr

,

Month

row

field

field

Details

CSV is nice because of its simplicity, but it breaks down when we need a
single field to hold multiple values. For that, we need a data format that allows
nested elements.

6.2 Parsing JSON

JSON is a text data format that captures a collection of name-value pairs,
and since values can themselves be collections, JSON can include nested
structures. Designing a parser for JSON gives us an opportunity to derive a
grammar from a language reference manual4 and to work with some more
complicated lexical rules. To make things more concrete, here’s a simple JSON
data file:

4. http://json.org

Chapter 6. Exploring Some Real Grammars • 86

report erratum • discusswww.it-ebooks.info

http://json.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

examples/t.json
{

"antlr.org": {
"owners" : [],
"live" : true,
"speed" : 1e100,
"menus" : ["File", "Help\nMenu"]

}
}

Our goal is to build an ANTLR grammar by reading the JSON reference
manual and looking at its syntax diagram and existing grammar. We’ll pull
out key phrases from the manual and figure out how to encode them as ANTLR
rules, starting with the grammatical structures.

JSON Grammatical Rules

The language reference says that a JSON file can be either an object, as shown
earlier, or an array of values. Grammatically, that’s just a choice pattern,
which we can specify formally with this rule:

examples/JSON.g4
json: object

| array
;

The next step is to drill down into the rule references in json. For objects, the
reference says the following:

An object is an unordered set of name-value pairs. An object begins with a left
brace ({) and ends with a right brace (}). Each name is followed by a colon (:), and
the name-value pairs are separated by a comma (,).

The syntax diagram at the JSON website also indicates that names have to
be strings.

To convert this English description into grammar constructs, we break it
apart looking for key phrases that represent one of our patterns: sequence,
choice, token dependency, and nested phrase. The start of the sentence “An
object is” clearly indicates we should create a rule called object. Next, an
“unordered set of name-value pairs” is really just a sequence of pairs. The
“unordered set” is referring to the semantics, or meaning, of the names;
specifically, the order of the names has no meaning. That means we can just
match any old list of pairs since we are just parsing.

The second sentence introduces a token dependency because an object starts
and ends with curly braces. The final sentence refines our sequence of pairs

report erratum • discuss

Parsing JSON • 87

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/t.json
http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

to be a sequence with a comma separator. Altogether, we get something like
this in ANTLR notation:

examples/JSON.g4
object

: '{' pair (',' pair)* '}'
| '{' '}' // empty object
;

pair: STRING ':' value ;

For clarity and to reduce code duplication, it’s a good idea to break out the
name-value pairs into their own rule. Otherwise, the first alternative of object
would look like this:

object : '{' STRING ':' value (',' STRING ':' value)* '}' | ... ;

Notice that we have STRING as a token and not a grammatical rule. It’s almost
certainly the case that an application reading JSON files would want to treat
strings as complete entities, rather than character sequences. Per our rules
of thumb from Section 5.6, Drawing the Line Between Lexer and Parser, on
page 79, strings should be tokens.

The JSON reference also has some informal grammatical rules, so let’s see
how our ANTLR rules compare. Here’s the grammar verbatim from the
reference:

object
{}
{ members }

members
pair
pair , members

pair
string : value

The reference has also broken out the pair rule, but there’s a members rule that
we don’t have. As described in the sidebar Loops vs. Tail Recursion, on page
89, it’s how a grammar expresses sequences without (...)* loops.

Turning to arrays, the other high-level construct, the reference manual says
this:

An array is an ordered collection of values. An array begins with a left bracket ([)
and ends with a right bracket (]). Values are separated by a comma (,).

Like rule object, array has a comma-separated sequence and a token dependency
between the left and right square brackets.

Chapter 6. Exploring Some Real Grammars • 88

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Loops vs. Tail Recursion

Rule members from the JSON reference manual looks strange because there is nothing
in the English description that seems to fit a choice of pair or pair followed by a comma
and reference to itself.

members
pair
pair , members

The difference lies in that ANTLR supports Extended BNF (EBNF) grammars and the
informal rules from the JSON reference manual use straight BNF. BNF does not
support subrules like our (...)* loop so they simulate looping with tail recursion (a rule
invocation to itself as the last element in an alternative).

To see the relationship between the English sequence description and this tail
recursive rule, here’s how members derives one, two, and three pairs:

members => pair

members => pair , members
=> pair , pair

members => pair , members
=> pair , pair , members
=> pair , pair , pair

This reinforces the warning in Section 5.2, Using Existing Grammars as a Guide, on
page 60 that existing grammars should be used as a guide, not the gospel truth.

examples/JSON.g4
array

: '[' value (',' value)* ']'
| '[' ']' // empty array
;

Stepping down a level of granularity, we get to value, which is a choice pattern
according to the reference.

A value can be a string in double quotes or a number or true or false or null or an
object or an array. These structures can be nested.

The term nested naturally indicates a nested phrase pattern for which we
should expect some recursive rule references. In ANTLR notation, value looks
like Figure 4, value in ANTLR notation, on page 90.

By referencing object or array, rule value becomes (indirectly) recursive. By
invoking either rule from value, we would eventually get back to rule value.

report erratum • discuss

Parsing JSON • 89

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

examples/JSON.g4
value

: STRING
| NUMBER
| object // recursion
| array // recursion
| 'true' // keywords
| 'false'
| 'null'
;

Figure 4—value in ANTLR notation

Rule value directly references string literals to match the JSON keywords. We
also treat numbers as tokens for the same reason as strings: applications
will treat numbers as complete entities.

That’s it for the grammatical rules. We’ve completely specified the structure
of a JSON file. Here’s how our grammar parses the sample input from earlier:

value

value]

}

,

:

::

array

[

}

value value

object

,

"menus" :

"File"

"live"

[

element

true

"Help\nMenu"

element

element

"owners"

{ element

:

element

json

"antlr.org" value

]

value "speed"

value

{

array

,

object

1e100

,

Of course, we can’t yet run our program to generate the image in that figure
until we’ve completed the lexer grammar. We need rules for the two key tokens:
STRING and NUMBER.

Chapter 6. Exploring Some Real Grammars • 90

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

JSON Lexical Rules

According to the JSON reference, strings are defined as follows:

A string is a sequence of zero or more Unicode characters, wrapped in double
quotes, using backslash escapes. A character is represented as a single character
string. A string is very much like a C or Java string.

As we discussed in the previous chapter, strings in most languages are pretty
much the same. JSON’s strings are similar to what we did in Matching String
Literals, on page 75, with the addition of Unicode escapes. Looking at the
existing JSON grammar, we can tell that the written description is incomplete.
The grammar says this:

char
any-Unicode-character-except-"-or-\-or-control-character
\"
\\
\/
\b
\f
\n
\r
\t
\u four-hex-digits

This specifies what all of the escapes are and that we should match any
Unicode character except for the double quote and backslash, which we can
specify with a ~["\\] inverted character set. (Operator ~ means “not.”) Our
STRING definition looks like this:

examples/JSON.g4
STRING : '"' (ESC | ~["\\])* '"' ;

The ESC rule matches either a predefined escape or a Unicode sequence.

examples/JSON.g4
fragment ESC : '\\' (["\\/bfnrt] | UNICODE) ;
fragment UNICODE : 'u' HEX HEX HEX HEX ;
fragment HEX : [0-9a-fA-F] ;

Rather than repeat the definition of a hex digit multiple times in UNICODE, we
use the HEX fragment rule as a shorthand. (Rules prefixed with fragment can
be called only from other lexer rules; they are not tokens in their own right.)

The last token used by the parser is NUMBER. The JSON reference defines them
as follows:

A number is very much like a C or Java number, except that the octal and hex-
adecimal formats are not used.

report erratum • discuss

Parsing JSON • 91

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The JSON reference’s existing grammar has some fairly complicated rules for
numbers, but we can pack it all into three main alternatives.

examples/JSON.g4
NUMBER

: '-'? INT '.' INT EXP? // 1.35, 1.35E-9, 0.3, -4.5
| '-'? INT EXP // 1e10 -3e4
| '-'? INT // -3, 45
;

fragment INT : '0' | [1-9] [0-9]* ; // no leading zeros
fragment EXP : [Ee] [+\-]? INT ; // \- since - means "range" inside [...]

Again, using fragment rules INT and EXP reduces duplication and makes the
grammar easier to read.

We know that INT should not match integers beginning with digit 0 from the
informal JSON grammar.

int
digit
digit1-9 digits
- digit
- digit1-9 digits

We deal with the - negation operator in NUMBER so we can focus on just the
first two choices: digit and digit1-9 digits. The first choice matches any single
digit, so 0 is cool all by itself. The second choice starts with digit1-9, which is
any digit but 0.

Unlike the CSV example in the previous section, JSON has to worry about
whitespace.

Whitespace can be inserted between any pair of tokens.

That is the typical meaning of whitespace, so we can reuse a rule from the
lexer “starter kit” found at the end of the previous chapter.

examples/JSON.g4
WS : [\t\n\r]+ -> skip ;

Now that we have a complete set of grammatical and lexical rules, we can try
it. Let’s start by printing out the tokens from sample input [1,"\u0049",1.3e9].

$ antlr4 JSON.g4➾
$ javac JSON*.java➾
$ grun JSON json -tokens➾
[1,"\u0049",1.3e9]➾
EOF➾
[@0,0:0='[',<5>,1:0]❮
[@1,1:1='1',<11>,1:1]
[@2,2:2=',',<4>,1:2]

Chapter 6. Exploring Some Real Grammars • 92

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[@3,3:10='"\u0049"',<10>,1:3]
[@4,11:11=',',<4>,1:11]
[@5,12:16='1.3e9',<11>,1:12]
[@6,17:17=']',<1>,1:17]
[@7,19:18='<EOF>',<-1>,2:0]

Our lexer correctly breaks up the input stream into tokens, so let’s try the
grammar rules.

$ grun JSON json -tree➾
[1,"\u0049",1.3e9]➾
EOF➾
(json (array [(value 1) , (value "\u0049") , (value 1.3e9)]))❮

The grammar properly interprets the token stream as an array of three values,
so everything looks great. For a more complicated grammar, we’d want to try
lots of other input files to verify correctness.

At this point, we’ve seen grammars for two data languages (CSV and JSON),
so let’s move on to a declarative language called DOT that ratchets up the
grammatical complexity and introduces us to a new lexical pattern: case-
insensitive keywords.

6.3 Parsing DOT

DOT5 is a declarative language for describing graphs such as network dia-
grams, trees, or state machines. (DOT is a declarative language because we
say what the graph connections are, not how to build the graph.) It’s a
generically useful graphing tool, particularly if you have a program that needs
to generate images. For example, ANTLR’s -atn option uses DOT to generate
state machine visualizations.

To get a feel for the language, imagine that we want to visualize a call tree
graph for a program with four functions. We could draw this by hand, or we
could specify the relationships with DOT as follows (either by hand or auto-
matically by building a language application that computed the relationships
from a program source):

examples/t.dot
digraph G {

rankdir=LR;
main [shape=box];
main -> f -> g; // main calls f which calls g
f -> f [style=dotted] ; // f is recursive
f -> h; // f calls h

}

5. http://www.graphviz.org/Documentation/dotguide.pdf

report erratum • discuss

Parsing DOT • 93

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/t.dot
http://www.graphviz.org/Documentation/dotguide.pdf
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Here’s the resulting diagram created using the DOT visualizer, graphviz:6

main f

g

h

We’re in a bit of luck because the DOT reference guide has syntax rules that
we can reuse almost verbatim, if we convert them to ANTLR syntax. Unfortu-
nately, we’re on our own for the lexical rules. We’ll have to read through the
documentation and some examples to figure out the exact rules. Our easiest
path is to start with the grammatical rules.

DOT Grammatical Rules

Here’s the core grammar in ANTLR notation translated from the primary
language reference:7

examples/DOT.g4
graph : STRICT? (GRAPH | DIGRAPH) id? '{' stmt_list '}' ;
stmt_list : (stmt ';'?)* ;
stmt : node_stmt

| edge_stmt
| attr_stmt
| id '=' id
| subgraph
;

attr_stmt : (GRAPH | NODE | EDGE) attr_list ;
attr_list : ('[' a_list? ']')+ ;
a_list : (id ('=' id)? ','?)+ ;
edge_stmt : (node_id | subgraph) edgeRHS attr_list? ;
edgeRHS : (edgeop (node_id | subgraph))+ ;
edgeop : '->' | '--' ;
node_stmt : node_id attr_list? ;
node_id : id port? ;
port : ':' id (':' id)? ;
subgraph : (SUBGRAPH id?)? '{' stmt_list '}' ;
id : ID

| STRING
| HTML_STRING
| NUMBER
;

The only deviation we make from the reference grammar is rule port. The ref-
erence provides this.

6. http://www.graphviz.org
7. http://www.graphviz.org/pub/scm/graphviz2/doc/info/lang.html

Chapter 6. Exploring Some Real Grammars • 94

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://www.graphviz.org
http://www.graphviz.org/pub/scm/graphviz2/doc/info/lang.html
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

port: ':' ID [':' compass_pt]
| ':' compass_pt

compass_pt
: (n | ne | e | se | s | sw | w | nw)

These rules would normally be fine if the compass points were keywords and
not legal as identifiers. But, the text in the reference alters the meaning of
the grammar.

Note also that the allowed compass point values are not keywords, so these strings
can be used elsewhere as ordinary identifiers....

That means we have to accept edge statements such as n -> sw; where n and
sw are identifiers, not compass points. The reference goes on to say this:
“...conversely, the parser will actually accept any identifier.” That’s not
entirely clear, but it sounds like the parser accepts any identifier for a compass
point. If that’s true, we don’t have to worry about compass points at all in the
grammar; we can replace references to rule compass_pt with id.

port: ':' id (':' id)? ;

Just to be sure, it never hurts to try suppositions with a DOT viewer like
those found on the Graphviz website.8 DOT does, in fact, accept the following
graph definition, so our port rule is OK:

digraph G { n -> sw; }

At this point, we have our grammatical rules in place. Pretending that our
token definitions are finished, let’s look at the parse tree for sample input
t.dot (using grun DOT graph -gui t.dot).

attr_list

node_stmt

->

attr_list

stmt

a_list

stmt_list

g

edgeRHS

dotted

]

->

id

idid

f

edgeop

f

edgeRHS

id

;

id

edgeop

shape

node_id

id

edgeop

; stmt

id

=

id node_id

->id =

box

a_list

id

{

id

] id

=id

stmt

node_id

;

f

}

node_idLR

f

graph

G

->

edge_stmt

node_id

edge_stmt

main

rankdir

;

style

main

node_id[edgeop

h

id

stmt

edgeRHS

stmt

[

id

node_id

edge_stmt

;

node_id

digraph

Now let’s try to define those tokens.

8. http://www.graphviz.org

report erratum • discuss

Parsing DOT • 95

www.it-ebooks.info

http://www.graphviz.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DOT Lexical Rules

Since the reference guide does not provide formal lexical rules, we have to
derive them from the written description. The keywords are the simplest, so
let’s start with those.

The reference says that “the keywords node, edge, graph, digraph, subgraph,
and strict are case-independent.” If they weren’t case insensitive, we could
simply use literals in the grammar like 'node'. To allow variations such as nOdE,
we need to lay out lexical rules with uppercase and lowercase variations at
each character position.

examples/DOT.g4
STRICT : [Ss][Tt][Rr][Ii][Cc][Tt] ;
GRAPH : [Gg][Rr][Aa][Pp][Hh] ;
DIGRAPH : [Dd][Ii][Gg][Rr][Aa][Pp][Hh] ;
NODE : [Nn][Oo][Dd][Ee] ;
EDGE : [Ee][Dd][Gg][Ee] ;
SUBGRAPH : [Ss][Uu][Bb][Gg][Rr][Aa][Pp][Hh] ;

Identifiers are similar to most programming languages.

Any string of alphabetic ([a-zA-Z\200-\377]) characters, underscores (’_’), or digits
([0-9]), not beginning with a digit.

The \200-\377 octal range is 80 through FF in hex, so our ID rule looks like this:

examples/DOT.g4
ID : LETTER (LETTER|DIGIT)*;
fragment
LETTER : [a-zA-Z\u0080-\u00FF_] ;

Helper rule DIGIT is one of the lexical rules we need to match numbers. The
reference guide says numbers follow this regular expression:

[-]?(.[0-9]+ | [0-9]+(.[0-9]*)?)

Replacing [0-9] with DIGIT, DOT numbers in ANTLR notation look like this:

examples/DOT.g4
NUMBER : '-'? ('.' DIGIT+ | DIGIT+ ('.' DIGIT*)?) ;
fragment
DIGIT : [0-9] ;

DOT strings are pretty basic.

any double-quoted string ("...") possibly containing escaped quotes (\")

To match anything inside the string, we use the dot wildcard operator to
consume characters until it sees the final double quote. We can also match
the escaped double quote as an alternative of the subrule loop.

Chapter 6. Exploring Some Real Grammars • 96

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

examples/DOT.g4
STRING : '"' ('\\"'|.)*? '"' ;

DOT also has what it calls an HTML string, which is, as far as I can tell,
exactly like a string except it uses angle brackets instead of double quotes.
The reference uses notation <...> and goes on to say this:

... in HTML strings, angle brackets must occur in matched pairs, and unescaped
newlines are allowed. In addition, the content must be legal XML, so that the
special XML escape sequences for ", &, <, and > may be necessary in order to
embed these characters in attribute values or raw text.

That description tells us most of what we need but doesn’t answer whether
we can have > inside an HTML comment. Also, it seems to imply we should
wrap sequences of tags in angle brackets like this: <<i>hi</i>>. From experi-
mentation with a DOT viewer, that is the case. DOT seems to accept anything
between angle brackets as long as the brackets match. So, > inside HTML
comments are not ignored like they would be by an XML parser. HTML string
<foo<!--ksjdf > -->> gets treated like string "foo<!--ksjdf > --".

To accept anything in angle brackets, we can use ANTLR construct '<' .*? '>'.
But that doesn’t allow for angle brackets nested inside because it will associate
the first > with the first < rather than the most recent <. The following rules
do the trick:

examples/DOT.g4
/** "HTML strings, angle brackets must occur in matched pairs, and
* unescaped newlines are allowed."
*/

HTML_STRING : '<' (TAG|~[<>])* '>' ;
fragment
TAG : '<' .*? '>' ;

The HTML_STRING rule allows a TAG within a pair of angle brackets, implementing
the single level of nesting. The ~[<>] set takes care of matching XML character
entities such as <. It matches anything other than a left or right angle
bracket. We can’t use wildcard and a nongreedy loop here. (TAG|.)*? would
match invalid input such as <<foo> because the wildcard inside the loop can
match <foo. HTML_STRING in that case wouldn’t have to call TAG to match a tag
or portion of a tag.

You might be tempted to use recursion to match up the angle brackets like
this:

HTML_STRING : '<' (HTML_STRING|~[<>])* '>' ;

report erratum • discuss

Parsing DOT • 97

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

But, that matches nested tags instead of just balancing the start and stop
angle brackets. A nested tag would look like <<i
>>, which we don’t want.

DOT has one last lexical structure we haven’t seen before. DOT matches and
discards lines starting with # because it considers them C preprocessor output.
We can treat them just like the single-line comment rules we’ve seen.

examples/DOT.g4
PREPROC : '#' .*? '\n' -> skip ;

That’s it for the DOT grammar (except for rules we’re very familiar with). We’ve
made it through our first moderately complex language! Aside from the more
complex grammatical and lexical structures, this section emphasizes that we
often have to look at multiple sources to unmask an entire language. The
larger a language is, the more we need multiple references and multiple rep-
resentative input samples. Sometimes poking and prodding an existing
implementation is the only way to ferret out the edge cases. No language ref-
erence is ever perfectly comprehensive.

We also have to decide what is properly part of the parsing process and what
should be processed later as a separate phase. For example, we treat the
special port names, such as ne and sw, as simple identifiers in the parser. We
also don’t interpret the HTML inside <...> strings. A full DOT implementation
would have to verify and process these elements at some point, but the
parser gets to treat them as chunks.

Now it’s time to tackle some programming languages. In the next section,
we’ll build a grammar for a traditional imperative programming language that
looks like C. After that, we’ll take on our biggest challenge yet with the R
functional programming language.

6.4 Parsing Cymbol

To demonstrate how to parse a programming language with syntax derived
from C, we’re going to build a grammar for a language I conjured up called
Cymbol. Cymbol is a simple non-object-oriented programming language that
looks like C without structs. A grammar for this language serves as a good
prototype for other new programming languages, if you’d like to build one.
We won’t see any new ANTLR syntax, but our grammar will demonstrate how
to build a simple left-recursive expression rule.

When designing a language, there’s no formal grammar or language reference
manual to work from. Instead, we start by conjuring up representative samples
of the language. From there, we derive a grammar as we did in Section 5.1,
Deriving Grammars from Language Samples, on page 58. (This is also how

Chapter 6. Exploring Some Real Grammars • 98

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/DOT.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

we’d deal with an existing language for which we had no formal grammar or
language reference.) Here’s a program with a global variable and recursive
function declaration that shows what Cymbol code looks like:

examples/t.cymbol
// Cymbol test
int g = 9; // a global variable
int fact(int x) { // factorial function

if x==0 then return 1;
return x * fact(x-1);

}

Just like on a cooking show, let’s see what the final product looks like so we
have a target in mind. Here’s the parse tree that illustrates how our grammar
should interpret the input (via grun Cymbol file -gui t.cymbol):

;

block

expr

functionDecl

return

1

x

expr

then

g

varDecl

fact

9

expr

expr

expr

;

x

int

x

}stat

*

x

expr)

==

expr

stat

formalParameter

)

file

(formalParameters

type

stat

if

exprList(

expr

-

return ;

0

type

int

1

int

expr

expr

type

{

=

expr

fact

Looking at that Cymbol program at the coarsest level, we see a sequence of
global variable and function declarations.

examples/Cymbol.g4
file: (functionDecl | varDecl)+ ;

Variable declarations look like they do in all C derivatives, with a type followed
by an identifier optionally followed by an initialization expression.

examples/Cymbol.g4
varDecl

: type ID ('=' expr)? ';'
;

type: 'float' | 'int' | 'void' ; // user-defined types

report erratum • discuss

Parsing Cymbol • 99

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/t.cymbol
http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Functions are basically the same: a type followed by the function name fol-
lowed by a parenthesized argument list followed by a function body.

examples/Cymbol.g4
functionDecl

: type ID '(' formalParameters? ')' block // "void f(int x) {...}"
;

formalParameters
: formalParameter (',' formalParameter)*
;

formalParameter
: type ID
;

A function body is a block of statements surrounded by curly braces. Let’s
make six kinds of statements: nested block, variable declaration, if statement,
return statement, assignment, and function call. We can encode that in ANTLR
syntax as follows:

examples/Cymbol.g4
block: '{' stat* '}' ; // possibly empty statement block
stat: block

| varDecl
| 'if' expr 'then' stat ('else' stat)?
| 'return' expr? ';'
| expr '=' expr ';' // assignment
| expr ';' // func call
;

The last major chunk of the language is the expression syntax. Because Cym-
bol is really just a prototype or stepping-stone for building other programming
languages, it’s OK to avoid a big list of operators. Let’s say we have unary
negate, Boolean not, multiplication, addition, subtraction, function calls,
array indexing, equality comparison, variables, integers, and parenthesized
expressions.

examples/Cymbol.g4
expr: ID '(' exprList? ')' // func call like f(), f(x), f(1,2)

| expr '[' expr ']' // array index like a[i], a[i][j]
| '-' expr // unary minus
| '!' expr // boolean not
| expr '*' expr
| expr ('+'|'-') expr
| expr '==' expr // equality comparison (lowest priority op)
| ID // variable reference
| INT
| '(' expr ')'
;

exprList : expr (',' expr)* ; // arg list

Chapter 6. Exploring Some Real Grammars • 100

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The most important lesson here is that we generally have to list the alternatives
in order from highest to lowest precedence. (For an in-depth discussion of
how ANTLR removes left recursion and handles operator precedence, see
Chapter 14, Removing Direct Left Recursion, on page 247.)

To see the precedence in action, take a look at the parse trees for input -x+y;
and -a[i]; starting at rule stat (instead of file to reduce clutter).

]

stat

expr

a

expr

expr

;

[

-

expr

i

exprexpr

x

expr

+

stat

-

;

expr y

-x+y; -a[i];

The parse tree on the left shows the unary minus binding most tightly to the
x since it has higher priority than addition. The unary minus alternative
appears before the addition alternative. On the other hand, unary minus has
lower precedence than the array index suffix operator because the alternative
with unary minus appears after the array index alternative. The parse tree
on the right illustrates that the negation is applied to the a[i], not just identi-
fier a. We’ll see a more complicated expression rule in the next section.

We don’t have to move on to the lexical rules like we usually do. Examining
them wouldn’t introduce anything new and interesting. The rules are pulled
almost verbatim from the lexical patterns in the previous chapter. Our focus
here is really on exploring the grammatical structure of an imperative pro-
gramming language.

Using our intuitive sense of what a struct-less or class-less Java language might
look like made building the Cymbol grammar pretty easy. And, if you’ve
wrapped your head around this grammar, you’re ready to build grammars
for your own moderately complex imperative programming languages.

Next, we’re going to tackle a language at the other extreme. To get a decent
R grammar together, we’ll have to deduce precise language structure by trudg-
ing through multiple references, examining sample programs, and testing the
existing R implementation.

report erratum • discuss

Parsing Cymbol • 101

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

6.5 Parsing R

R is an expressive domain-specific programming language for describing
statistical problems. For example, it’s easy to create vectors, apply functions
to them, and filter them (shown here using the R interactive shell).

x <- seq(1,10,.5) # x = 1, 1.5, 2, 2.5, 3, 3.5, ..., 10➾
y <- 1:5 # y = 1, 2, 3, 4, 5➾
z <- c(9,6,2,10,-4) # z = 9, 6, 2, 10, -4➾
y + z # add two vectors➾

[1] 10 8 5 14 1 # result is 1-dimensional vector❮
z[z<5] # all elements in z < 5➾

[1] 2 -4❮
mean(z) # compute the mean of vector z➾

[1] 4.6❮
zero <- function() { return(0) }➾
zero()➾

[1] 0❮

R is a medium-sized but complicated programming language, and most or
all of us have a handicap: we don’t know R. That means we can’t just write
down the grammar from our internal sense of the language structure like we
could for Cymbol in the previous section. We must deduce R’s structure by
wading through reference manuals, examples, and a formal yacc grammar9

from the existing implementation.

To get started, it’s a good idea to skim through some language overviews.10,11

We should also look at R examples to get a feel for the language and then
pick some files to serve as an “acceptance test.” Ajay Shah has built a fine
set of examples12 we can use. Covering those examples would mean that our
grammar handles a large percentage of R code. (Getting a perfect grammar
without knowing the language intimately is unlikely.) To help us in our quest
to build an R grammar, there’s a lot of documentation available at the main
website,13 but let’s focus on R-intro14 and language definition R-lang.15

Construction of our grammar begins at the coarsest level, as usual. From the
language overviews, it’s clear that R programs are a series of expressions or
assignments. Even function definitions are assignments; we assign a function

9. http://svn.r-project.org/R/trunk/src/main/gram.y
10. http://www.stat.wisc.edu/~deepayan/SIBS2005/slides/language-overview.pdf
11. http://www.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/R_introduction.pdf
12. http://www.mayin.org/ajayshah/KB/R/index.html
13. http://www.r-project.org/
14. http://cran.r-project.org/doc/manuals/R-intro.pdf
15. http://cran.r-project.org/doc/manuals/R-lang.html

Chapter 6. Exploring Some Real Grammars • 102

report erratum • discusswww.it-ebooks.info

http://svn.r-project.org/R/trunk/src/main/gram.y
http://www.stat.wisc.edu/~deepayan/SIBS2005/slides/language-overview.pdf
http://www.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/R_introduction.pdf
http://www.mayin.org/ajayshah/KB/R/index.html
http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-lang.html
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

literal to a variable. The only unfamiliar thing is that there are three assign-
ment operators: <-, =, and <<-. For our purposes, we don’t have to care about
their meaning because we’re building only a parser, not an interpreter or
compiler. Our first whack at the program structure looks something like this:

prog : (expr_or_assign '\n')* EOF ;

expr_or_assign
: expr ('<-' | '=' | '<<-') expr_or_assign
| expr
;

After reading some examples, though, it looks like we can also put more than
one expression on a line by separating them with semicolons. R-intro confirms
this. Also, while not in the manuals, the R shell allows and ignores blank
lines. Tweaking our rules accordingly leads us to the beginning of our
grammar.

examples/R.g4
prog: (expr_or_assign (';'|NL)

| NL
)*
EOF

;

expr_or_assign
: expr ('<-'|'='|'<<-') expr_or_assign
| expr
;

We use token NL rather than literal '\n' because we should allow Windows (\r\n)
and Unix newlines (\n), which is easier to define as a lexical rule.

examples/R.g4
// Match both UNIX and Windows newlines
NL : '\r'? '\n' ;

Notice that NL doesn’t say to discard those tokens as is customary. The parser
uses them as expression terminators, like semicolons in Java, so the lexer
must pass them to the parser.

The majority of R syntax relates to expressions, so that’s what we’ll focus on
for the rest of the section. There are three main kinds: statement expressions,
operator expressions, and function-related expressions. Since R statements
are very similar to their imperative language counterparts, let’s start with
those to get them out of the way. Here are the alternatives dealing with
statements from rule expr (which physically appear after the operator alterna-
tives in expr):

report erratum • discuss

Parsing R • 103

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

examples/R.g4
| '{' exprlist '}' // compound statement
| 'if' '(' expr ')' expr
| 'if' '(' expr ')' expr 'else' expr
| 'for' '(' ID 'in' expr ')' expr
| 'while' '(' expr ')' expr
| 'repeat' expr
| '?' expr // get help on expr, usually string or ID
| 'next'
| 'break'

The first alternative matches the group of expressions per R-intro: “Elementary
commands can be grouped together into one compound expression by braces
(’{’ and ’}’).” Here is exprlist:

examples/R.g4
exprlist

: expr_or_assign ((';'|NL) expr_or_assign?)*
|
;

Most of the R expression language handles the plentiful operators. To get
their correct forms, our best bet is to rely on the yacc grammar. Executable
code is often, but not always, the best guide to a language author’s intentions.
To get the precedence, we need to look at the precedence table, which
explicitly lays out the relative operator precedence. For example, here is what
the yacc grammar says for the arithmetic operators (%left precedence commands
listed first have lower priority):

%left '+' '-'
%left '*' '/'

The R-lang document also has a section called “Infix and prefix operators”
that gives the operator precedence rules, but it seems to be missing the :::
operator found in the yacc grammar. Putting it all together, we can use the
following alternatives for the binary, prefix, and suffix operators:

examples/R.g4
expr: expr '[[' sublist ']' ']' // '[[' follows R's yacc grammar

| expr '[' sublist ']'
| expr ('::'|':::') expr
| expr ('$'|'@') expr
| expr '^'<assoc=right> expr
| ('-'|'+') expr
| expr ':' expr
| expr USER_OP expr // anything wrappedin %: '%' .* '%'
| expr ('*'|'/') expr
| expr ('+'|'-') expr
| expr ('>'|'>='|'<'|'<='|'=='|'!=') expr

Chapter 6. Exploring Some Real Grammars • 104

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

| '!' expr
| expr ('&'|'&&') expr
| expr ('|'|'||') expr
| '~' expr
| expr '~' expr
| expr ('->'|'->>'|':=') expr

We don’t have to care about what the operators mean since we care only
about recognition in this example. We just have to ensure that our grammar
matches the precedence and associativity correctly.

The one unusual feature of the expr rule is the use of '[[' instead of '[' '[' in
alternative expr '[[' sublist ']' ']'. ([[...]] selects a single element, whereas [...] yields
a sublist.) I took '[[' directly from R’s yacc grammar. This probably enforces a
“no space between two left brackets” rule, but there was no obvious specifica-
tion of this in the reference manual.

The ^ operator has token suffix <assoc=right> because R-lang indicates the
following:

The exponentiation operator ’^’ and the left assignment operators ’<- = <<-’ group
right to left, all other operators group left to right. That is, 2 ^ 2 ^ 3 is 2 ^ 8, not
4 ^ 3.

With the statement and operator expressions out of the way, let’s look at the
last major chunk of the expr rule: defining and calling functions. We can use
the following two alternatives:

examples/R.g4
| 'function' '(' formlist? ')' expr // define function
| expr '(' sublist ')' // call function

Rules formlist and sublist define the formal argument definition lists and call
site argument expressions, respectively. The rule names mirror what the yacc
grammar uses to make it easier to compare the two grammars.

The formal function arguments expressed by formlist follow the specification
in R-lang.

... a comma-separated list of items each of which can be an identifier, or of the
form ’identifier = default ’, or the special token '...'. The default can be any valid
expression.

We can encode that using an ANTLR rule that is similar to formlist in the yacc
grammar (see Figure 5, ANTLR rule for a formlist-like rule, on page 106).

Now, to call a function instead of defining one, R-lang describes the argument
syntax as shown in Figure 6, R-lang argument syntax, on page 106.

report erratum • discuss

Parsing R • 105

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

examples/R.g4
formlist : form (',' form)* ;

form: ID
| ID '=' expr
| '...'
;

Figure 5—ANTLR rule for a formlist-like rule

Each argument can be tagged (tag=expr), or just be a simple expression. It can

also be empty or it can be one of the special tokens ’...’, ’..2’, etc.

Figure 6—R-lang argument syntax to call a function

A peek at the yacc grammar tightens this up a little bit for us; it indicates we
can also have things like "n"=0, n=1, and NULL = 2. Combining specifications,
we arrive at the following rules for function call arguments:

examples/R.g4
sublist : sub (',' sub)* ;
sub : expr

| ID '='
| ID '=' expr
| STRING '='
| STRING '=' expr
| 'NULL' '='
| 'NULL' '=' expr
| '...'
|
;

You might be wondering where in rule sub we match special tokens like ..2. It
turns out we don’t have to explicitly match them because our lexer can treat
them as identifiers. According to R-lang:

Identifiers consist of a sequence of letters, digits, the period (’.’), and the under-
score. They must not start with a digit nor underscore, nor with a period followed
by a digit. ... Notice that identifiers starting with a period [like] ‘...’ and ‘..1’, ‘..2’,
etc., are special.

To encode all of that, we use the following identifier rule:

examples/R.g4
ID : '.' (LETTER|'_'|'.') (LETTER|DIGIT|'_'|'.')*

| LETTER (LETTER|DIGIT|'_'|'.')*
;

fragment LETTER : [a-zA-Z] ;

Chapter 6. Exploring Some Real Grammars • 106

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://media.pragprog.com/titles/tpantlr2/code/examples/R.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The first alternative separates out the first case, where an identifier starts
with a period. We have to make sure that a digit is not the next character.
We can ensure that with subrule (LETTER|'_'|'.'). To ensure that an identifier
does not start with a digit or underscore, we start the second alternative with
a reference to help rule LETTER. To match ..2, we use the first alternative. The
initial '.' reference matches the first dot, the (LETTER|'_'|'.') subrule matches the
second dot, and the last subrule matches digit 2.

The remainder of the lexer rules are direct copies or small extensions of rules
we’ve seen before, so we can leave them out of our discussion here.

Let’s take a look our handiwork now by using grun on the following input:

examples/t.R
addMe <- function(x,y) { return(x+y) }
addMe(x=1,2)
r <- 1:5

Here’s how to build and bring up the parse tree visually (Figure 7, Parse tree
for input t.R, on page 108) for input t.R:

$ antlr4 R.g4
$ javac R*.java
$ grun R prog -gui t.R

Our R grammar works well as long as each expression fits on a line, such as
function addMe(). Unfortunately, that assumption is too restrictive because R
allows functions and other expressions to span multiple lines. Nonetheless,
we’ll wrap up here because we’ve covered the R grammatical structure itself.
In source directory code/extras, you’ll find a solution to the persnickety problem
of ignoring newlines within expressions; see R.g4, RFilter.g4, and TestR.java. It filters
tokens from the lexer to keep or toss out newlines appropriately, according
to syntax.

Our goal in this chapter was to solidify our knowledge of ANTLR syntax and
to learn how to derive grammars from language reference manuals, examples,
and existing non-ANTLR grammars. To that end, we looked at two data lan-
guages (CSV, JSON), a declarative language (DOT), an imperative language
(Cymbol), and a functional language (R). These examples cover all of the skills
you’ll need to build grammars for most moderately complex languages. Before
you move on, though, it’s a good idea to lock in your new expertise by down-
loading the grammars and trying some simple modifications to alter the
languages. For example, you might try adding more operators and statements
to the Cymbol grammar. Use the TestRig to see the relationship between your
altered grammars and sample inputs.

report erratum • discuss

Parsing R • 107

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/t.R
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

form ,

expr

expr

(

(

5{

expr

expr

expr <-

<EOF>

exprlist

(

expr_or_assign

\n

1

expr

<-

\n

sub

prog

form

formlist

expr

x

+

)

addMe

addMe

expr

)

,

expr_or_assign

x

expr_or_assign

2

sublistexpr

=

expr

sub

\n

expr_or_assign

expr

1

expr

:

expr

expr

) sub

}

function

expr

r

expr_or_assign

return

expr

y

sublist

y

expr_or_assign

x

Figure 7—Parse tree for input t.R

So far in this book, we have focused on language recognition. But, grammars
by themselves can indicate only whether the input conforms to the language.
Now that we are parsing wizards, we’re ready to learn about attaching appli-
cation-specific code to the parsing mechanism, which we’ll do in the next
chapter. Following that, we’ll build some real language applications.

Chapter 6. Exploring Some Real Grammars • 108

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 7

Decoupling Grammars from
Application-Specific Code

Now that we know how to formally define languages using ANTLR grammar
syntax, it’s time to breathe some life into our grammars. By itself, a grammar
isn’t that useful because the associated parser tells us only whether an input
sentence conforms to a language specification. To build language applications,
we need the parser to trigger specific actions when it sees specific input sen-
tences, phrases, or tokens. The collection of phrase → action pairs represents
our language application or at least the interface between the grammar and
a larger surrounding application.

In this chapter, we’re going to learn how to use parse-tree listeners and visitors
to build language applications. A listener is an object that responds to rule
entry and exit events (phrase recognition events) triggered by a parse-tree
walker as it discovers and finishes nodes. To support situations where an
application must control how a tree is walked, ANTLR-generated parse trees
also support the well-known tree visitor pattern.

The biggest difference between listeners and visitors is that listener methods
aren’t responsible for explicitly calling methods to walk their children. Visitors,
on the other hand, must explicitly trigger visits to child nodes to keep the
tree traversal going (as we saw in Section 2.5, Parse-Tree Listeners and Visitors,
on page 17). Visitors get to control the order of traversal and how much of
the tree gets visited because of these explicit calls to visit children. For conve-
nience, I’ll use the term event method to refer to either a listener callback or
a visitor method.

Our goal in this chapter is to understand exactly what tree-walking facilities
ANTLR builds for us and why. We’ll start by looking at the origins of the

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listener mechanism and how we can keep application-specific code out of our
grammars using listeners and visitors. Next, we’ll learn how to get ANTLR to
generate more precise events, one for each alternative in a rule. Once we know
a little more about ANTLR’s tree walking, we’ll look at three calculator
implementations that illustrate different ways to pass around subexpression
results. Finally, we’ll discuss the advantages and disadvantages of the three
approaches. At that point, we’ll be ready to tackle the real examples in the
next chapter.

7.1 Evolving from Embedded Actions to Listeners

If you’re used to previous versions of ANTLR or other parser generators, you’ll
be surprised to hear that we can build language applications without
embedding actions (code) in the grammars. The listener and visitor mecha-
nisms decouple grammars from application code, providing some compelling
benefits. Such decoupling nicely encapsulates an application instead of frac-
turing it and dispersing the pieces across a grammar. Without embedded
actions, we can reuse the same grammar in different applications without
even recompiling the generated parser.

ANTLR can also generate parsers in different programming languages for the
same grammar if it’s bereft of actions. (I anticipate supporting different target
languages after the 4.0 release.) Integrating grammar bug fixes or updates is
also easy because we don’t have to worry about merge conflicts because of
embedded actions.

In this section, we’re going to investigate the evolution from grammar with
embedded actions to completely decoupled grammar and application. The
following property file grammar with embedded actions sketched in with «...»
reads property files, one property assignment per line. Actions like «start file»
are just stand-ins for appropriate Java code.

grammar PropertyFile;
file : {«start file»} prop+ {«finish file»} ;
prop : ID '=' STRING '\n' {«process property»} ;
ID : [a-z]+ ;
STRING : '"' .*? '"' ;

Such a tight coupling ties the grammar to one specific application. A better
approach is to create a subclass of PropertyFileParser, the parser generated by ANTLR,
and convert the embedded actions to methods. The refactoring leaves only trivial
method call actions in the grammar that trigger the newly created methods. Then,
by subclassing the parser, we can implement any number of different applications
without altering the grammar. One such refactoring looks like this:

Chapter 7. Decoupling Grammars from Application-Specific Code • 110

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

grammar PropertyFile;
@members {

void startFile() { } // blank implementations
void finishFile() { }
void defineProperty(Token name, Token value) { }

}
file : {startFile();} prop+ {finishFile();} ;
prop : ID '=' STRING '\n' {defineProperty($ID, $STRING)} ;
ID : [a-z]+ ;
STRING : '"' .*? '"' ;

This decoupling makes the grammar reusable for different applications, but
the grammar is still tied to Java because of the method calls. We’ll deal with
that shortly.

To demonstrate the reusability of the refactored grammar, let’s build two dif-
ferent “applications,” starting with one that just prints out the properties as
it encounters them. The process is simply to extend the parser class generated
by ANTLR and override one or more of the methods triggered by the grammar.

class PropertyFilePrinter extends PropertyFileParser {
void defineProperty(Token name, Token value) {

System.out.println(name.getText()+"="+value.getText());
}

}

Notice that we don’t have to override startFile() or finishFile() because of the default
implementations in the PropertyFileParser superclass generated by ANTLR.

To launch this application, we need to create an instance of our special Prop-
ertyFilePrinter parser subclass instead of the usual PropertyFileParser.

PropertyFileLexer lexer = new PropertyFileLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
PropertyFilePrinter parser = new PropertyFilePrinter(tokens);
parser.file(); // launch our special version of the parser

As a second application, let’s load the properties into a map instead of printing
them out. All we have to do is create a new subclass and put different func-
tionality in defineProperty().

class PropertyFileLoader extends PropertyFileParser {
Map<String,String> props = new OrderedHashMap<String, String>();
void defineProperty(Token name, Token value) {

props.put(name.getText(), value.getText());
}

}

After the parser executes, field props will contain the name-value pairs.

report erratum • discuss

Evolving from Embedded Actions to Listeners • 111

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

This grammar still has the problem that the embedded actions restrict us to
generating parsers only in Java. To make the grammar reusable and language
neutral, we need to completely avoid embedded actions. The next two sections
show how to do that with a listener and a visitor.

7.2 Implementing Applications with Parse-Tree Listeners

To build language applications without entangling the application and the
grammar, the key is to have the parser create a parse tree and then walk it
to trigger application-specific code. We can walk the tree using our favorite
technique, or we can use one of the tree-walking mechanisms that ANTLR
generates. In this section, we’re going to use ANTLR’s built-in ParseTreeWalker
to build a listener-based version of the property file application from the
previous section.

Let’s start with a denuded version of the property file grammar.

listeners/PropertyFile.g4
file : prop+ ;
prop : ID '=' STRING '\n' ;

Here’s a sample property file:

listeners/t.properties
user="parrt"
machine="maniac"

From the grammar, ANTLR generates PropertyFileParser, which automatically
builds the following parse tree:

prop

machine

file

\n "maniac"=

prop

"parrt"= \nuser

Once we have a parse tree, we can use ParseTreeWalker to visit all of the nodes,
triggering enter and exit methods.

Let’s take a look at listener interface PropertyFileListener that ANTLR generates
from grammar PropertyFile. ANTLR’s ParseTreeWalker triggers enter and exit
methods for each rule subtree as it discovers and finishes nodes, respectively.
Because there are only two parser rules in grammar PropertyFile, there are four
methods in the interface.

Chapter 7. Decoupling Grammars from Application-Specific Code • 112

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/PropertyFile.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/t.properties
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listeners/PropertyFileListener.java
import org.antlr.v4.runtime.tree.*;
import org.antlr.v4.runtime.Token;

public interface PropertyFileListener extends ParseTreeListener {
void enterFile(PropertyFileParser.FileContext ctx);
void exitFile(PropertyFileParser.FileContext ctx);
void enterProp(PropertyFileParser.PropContext ctx);
void exitProp(PropertyFileParser.PropContext ctx);

}

The FileContext and PropContext objects are implementations of parse-tree nodes
specific to each grammar rule. They contain useful methods that we’ll explore
as we go along.

As a convenience, ANTLR also generates class PropertyFileBaseListener with default
implementations that mimic the blank methods we manually wrote in the
@members area of the grammar in the previous section.

public class PropertyFileBaseVisitor<T> extends AbstractParseTreeVisitor<T>
implements PropertyFileVisitor<T>

{
@Override public T visitFile(PropertyFileParser.FileContext ctx) { }
@Override public T visitProp(PropertyFileParser.PropContext ctx) { }

}

The default implementations let us override and implement only those
methods we care about. For example, here’s a reimplementation of the prop-
erty file loader that has a single method like before, but using the listener
mechanism:

listeners/TestPropertyFile.java
public static class PropertyFileLoader extends PropertyFileBaseListener {

Map<String,String> props = new OrderedHashMap<String, String>();
public void exitProp(PropertyFileParser.PropContext ctx) {

String id = ctx.ID().getText(); // prop : ID '=' STRING '\n' ;
String value = ctx.STRING().getText();
props.put(id, value);

}
}

The main differences are that this version extends the base listener instead
of the parser and that the listener methods get triggered after the parser has
completed.

There are a lot of interfaces and classes in flight here, so let’s look at the
inheritance relationship between the key players (interfaces in italics).

report erratum • discuss

Implementing Applications with Parse-Tree Listeners • 113

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/PropertyFileListener.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestPropertyFile.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

enterFile
exitFile
enterProp
exitProp

PropertyFileListener
visitTerminal
enterEveryRule
exitEveryRule
visitErrorNode

ParseTreeListener
enterFile { }
exitFile { }
enterProp { }
exitProp { }
visitTerminal { }
enterEveryRule { }
exitEveryRule { }
visitErrorNode { }

PropertyFileBaseListener
exitProp {...}
PropertyFileLoader

ANTLR library ANTLR generates from PropertyFile.g4 Application code

Interface ParseTreeListener is in the ANTLR runtime library and dictates that
every listener respond to events visitTerminal(), enterEveryRule(), exitEveryRule(), and
(upon syntax errors) visitErrorNode(). ANTLR generates interface PropertyFileListener
from grammar PropertyFile and default implementations for all methods in class
PropertyFileBaseListener. The only thing that we’re building is the PropertyFileLoader,
which inherits all of the blank functionality from PropertyFileBaseListener.

Method exitProp() has access to the rule context object, PropContext, associated
with rule prop. That context object has methods for each of the elements
mentioned in rule prop (ID and STRING). Because those elements are token ref-
erences in the grammar, the methods return TerminalNode parse-tree nodes.
We can either directly access the text of the token payload via getText(), as
we’ve done here, or get the Token payload first via getSymbol().

And now for the exciting conclusion. Let’s walk the tree, listening in with our
new PropertyFileLoader.

listeners/TestPropertyFile.java
// create a standard ANTLR parse tree walker
ParseTreeWalker walker = new ParseTreeWalker();
// create listener then feed to walker
PropertyFileLoader loader = new PropertyFileLoader();
walker.walk(loader, tree); // walk parse tree
System.out.println(loader.props); // print results

Here’s a refresher on how to run ANTLR on a grammar, compile the generated
code, and launch a test program to process an input file:

$ antlr4 PropertyFile.g4
$ ls PropertyFile*.java
PropertyFileBaseListener.java PropertyFileListener.java
PropertyFileLexer.java PropertyFileParser.java
$ javac TestPropertyFile.java PropertyFile*.java
$ cat t.properties
user="parrt"
machine="maniac"
$ java TestPropertyFile t.properties
{user="parrt", machine="maniac"}

Chapter 7. Decoupling Grammars from Application-Specific Code • 114

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestPropertyFile.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Our test program successfully reconstitutes the property assignments from
the file into a map data structure in memory.

A listener-based approach is great because all of the tree walking and method
triggering is done automatically. Sometimes, though, automatic tree walking
is also a weakness because we can’t control the walk itself. For example, we
might want to walk a parse tree for a C program, ignoring everything inside
functions by skipping the function body subtrees. Listener event methods
also can’t use method return values to pass data around. When we need to
control the walk or want to return values with event-method return values,
we use a visitor pattern. Let’s build a visitor-based version of this property
file loader to compare the approaches.

7.3 Implementing Applications with Visitors

To use a visitor instead of a listener, we ask ANTLR to generate a visitor
interface, implement that interface, and then create a test rig that calls visit()
on the parse tree. We don’t have to touch the grammar at all.

When we use the -visitor option on the command line, ANTLR generates interface
PropertyFileVisitor and class PropertyFileBaseVisitor, which has the following default
implementations:

public class PropertyFileBaseVisitor<T> extends AbstractParseTreeVisitor<T>
implements PropertyFileVisitor<T>

{
@Override public T visitFile(PropertyFileParser.FileContext ctx) { ... }
@Override public T visitProp(PropertyFileParser.PropContext ctx) { ... }

}

We can copy the map functionality from exitProp() in the listener and paste it
into the visitor method associated with rule prop.

listeners/TestPropertyFileVisitor.java
public static class PropertyFileVisitor extends

PropertyFileBaseVisitor<Void>
{

Map<String,String> props = new OrderedHashMap<String, String>();
public Void visitProp(PropertyFileParser.PropContext ctx) {

String id = ctx.ID().getText(); // prop : ID '=' STRING '\n' ;
String value = ctx.STRING().getText();
props.put(id, value);
return null; // Java says must return something even when Void

}
}

For comparison to the listener version in the previous section, here’s the
inheritance relationship between the visitor’s interfaces and classes:

report erratum • discuss

Implementing Applications with Visitors • 115

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestPropertyFileVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

visitFile
visitProp

PropertyFileVisitor<T>
visitFile { }
visitProp { }

PropertyFileBaseVisitor<T>
visitProp {...}
PropertyFileVisitor

ANTLR generates from PropertyFile.g4 Application code

Visitors walk parse trees by explicitly calling interface ParseTreeVisitor’s visit()
method on child nodes. That method is implemented in AbstractParseTreeVisitor.
In this case, the nodes created for prop invocations don’t have children, so
visitProp() doesn’t have to call visit(). We’ll look at visitor generic type parameters
in Traversing Parse Trees with Visitors, on page 119.

The biggest difference between a visitor and listener test rig (such as TestProp-
ertyFile) is that visitor test rigs don’t need a ParseTreeWalker. They just ask the
visitor to visit the tree created by the parser.

listeners/TestPropertyFileVisitor.java
PropertyFileVisitor loader = new PropertyFileVisitor();
loader.visit(tree);
System.out.println(loader.props); // print results

With all of that in place, here’s the build and test sequence:

$ antlr4 -visitor PropertyFile.g4 # create visitor as well this time
$ ls PropertyFile*.java
PropertyFileBaseListener.java PropertyFileListener.java
PropertyFileBaseVisitor.java PropertyFileParser.java
PropertyFileLexer.java PropertyFileVisitor.java
$ javac TestPropertyFileVisitor.java
$ cat t.properties
user="parrt"
machine="maniac"
$ java TestPropertyFileVisitor t.properties
{user="parrt", machine="maniac"}

We can build just about anything we want with visitors and listeners. Once
we’re in the Java space, there’s no more ANTLR stuff to learn. All we have to
know is the relationship between a grammar, its parse tree, and the visitor
or listener event methods. Beyond that, it’s just code. In response to recogniz-
ing input phrases, we can generate output, collect information (as we’ve done
here), validate phrases in some way, or perform computations.

This property file example is small enough that we didn’t run into an issue
regarding rules with alternatives. By default, ANTLR generates a single kind
of event for each rule no matter which alternative the parser matches. That’s
pretty inconvenient because the listener and visitor methods have to figure

Chapter 7. Decoupling Grammars from Application-Specific Code • 116

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestPropertyFileVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

out which alternative was matched by the parser. In the next section, we’ll
see how to get events at a finer granularity.

7.4 Labeling Rule Alternatives for Precise Event Methods

To illustrate the event granularity problem, let’s try to build a simple calculator
with a listener for the following expression grammar:

listeners/Expr.g4
grammar Expr;
s : e ;
e : e op=MULT e // MULT is '*'

| e op=ADD e // ADD is '+'
| INT
;

As it stands, rule e yields a fairly unhelpful listener because all alternatives
of e result in a tree walker triggering the same enterE() and exitE() methods.

public interface ExprListener extends ParseTreeListener {
void enterE(ExprParser.EContext ctx);
void exitE(ExprParser.EContext ctx);
...

}

The listener methods would have to test to see which alternative the parser
matched for each e subtree using the op token label and the methods of ctx.

listeners/TestEvaluator.java
public void exitE(ExprParser.EContext ctx) {

if (ctx.getChildCount()==3) { // operations have 3 children
int left = values.get(ctx.e(0));
int right = values.get(ctx.e(1));
if (ctx.op.getType()==ExprParser.MULT) {

values.put(ctx, left * right);
}
else {

values.put(ctx, left + right);
}

}
else {

values.put(ctx, values.get(ctx.getChild(0))); // an INT
}

}

The MULT field referenced in exitE() is generated by ANTLR in ExprParser:

public class ExprParser extends Parser {
public static final int MULT=1, ADD=2, INT=3, WS=4;
...

}

report erratum • discuss

Labeling Rule Alternatives for Precise Event Methods • 117

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/Expr.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestEvaluator.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

If we look at class EContext in class ExprParser, we can see that ANTLR packed
all elements from all three alternatives into the same context object.

public static class EContext extends ParserRuleContext {
public Token op; // derived from label op
public List<EContext> e() { ... } // get all e subtrees
public EContext e(int i) { ... } // get ith e subtree
public TerminalNode INT() { ... } // get INT node if alt 3 of e
...

}

To get more precise listener events, ANTLR lets us label the outermost alter-
natives of any rule using the # operator. Let’s derive grammar LExpr from Expr
and label e’s alternatives. Here’s the modified e rule:

listeners/LExpr.g4
e : e MULT e # Mult

| e ADD e # Add
| INT # Int
;

Now ANTLR generates a separate listener method for each alternative of e.
Consequently, we don’t need the op token label anymore. For alternative label
X, ANTLR generates enterX() and exitX().

public interface LExprListener extends ParseTreeListener {
void enterMult(LExprParser.MultContext ctx);
void exitMult(LExprParser.MultContext ctx);
void enterAdd(LExprParser.AddContext ctx);
void exitAdd(LExprParser.AddContext ctx);
void enterInt(LExprParser.IntContext ctx);
void exitInt(LExprParser.IntContext ctx);
...

}

Note also that ANTLR generates specific context objects (subclasses of EContext)
for the alternatives, named after the labels. The getter methods of the special-
ized context objects are limited to just those applicable to the associated
alternatives. For example, IntContext has only an INT() method. We can ask for
ctx.INT() in enterInt() but not in enterAdd().

Listeners and visitors are great. We get reusable and retargetable grammars
as well as encapsulated language applications just by fleshing out event
methods. ANTLR even automatically generates the skeleton code for us. It
turns out, though, that the applications we’ve built so far are so simple we
haven’t run into a common implementation issue, which is that event methods
sometimes need to pass around partial results or other information.

Chapter 7. Decoupling Grammars from Application-Specific Code • 118

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/LExpr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

7.5 Sharing Information Among Event Methods

Whether we’re collecting information or computing values, it’s often most
convenient and good programming practice to pass around arguments and
return values, rather than using fields or other “global variables.” The problem
is that ANTLR automatically generates the signature of the listener methods
without application-specific return values or arguments. ANTLR also generates
visitor methods without application-specific arguments.

In this section, we’re going to explore mechanisms that let event methods
pass data around without altering the event method signatures. We’ll build
three different implementations of the same simple calculator based upon
the LExpr expression grammar from the previous section. The first implemen-
tation uses visitor method return values, the second defines a field shared
among event methods, and the third annotates parse tree nodes to squirrel
away values of interest.

Traversing Parse Trees with Visitors

To build a visitor-based calculator, the easiest approach is to have the event
methods associated with rule expr return subexpression values. For example,
visitAdd() would return the result of adding two subexpressions. visitInt() would
return the value of the integer. Conventional visitors don’t specify return
values for their visit methods. Adding a return type is easy when we implement
a class for our specific application’s needs, extending LExprBaseVisitor<T> and
supplying Integer as the <T> type parameter. Here’s what our visitor looks like:

listeners/TestLEvalVisitor.java
public static class EvalVisitor extends LExprBaseVisitor<Integer> {

public Integer visitMult(LExprParser.MultContext ctx) {
return visit(ctx.e(0)) * visit(ctx.e(1));

}

public Integer visitAdd(LExprParser.AddContext ctx) {
return visit(ctx.e(0)) + visit(ctx.e(1));

}

public Integer visitInt(LExprParser.IntContext ctx) {
return Integer.valueOf(ctx.INT().getText());

}
}

EvalVisitor inherits the general visit() method from ANTLR’s AbstractParseTreeVisitor
class, which our visitor uses to concisely trigger subtree visits.

report erratum • discuss

Sharing Information Among Event Methods • 119

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvalVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Notice that EvalVisitor doesn’t have a visitor method for rule s. The default
implementation of visitS() in LExprBaseVisitor calls predefined method ParseTreeVisi-
tor.visitChildren(). visitChildren() returns the value returned from the visit of the last
child. In this case, visitS() returns the value of the expression returned from
visiting its only child (the e node). We can use this default behavior.

In test rig TestLEvalVisitor.java, we have the usual code to launch LExprParser and
print the parse tree. Then we need code to launch EvalVisitor and print out the
expression value computed while visiting the tree.

listeners/TestLEvalVisitor.java
EvalVisitor evalVisitor = new EvalVisitor();
int result = evalVisitor.visit(tree);
System.out.println("visitor result = "+result);

To build our calculator, we tell ANTLR to generate the visitor, using the -visitor
option as we did for the property file grammar earlier. (If we no longer want
to generate a listener, we also use option -no-listener.) Here’s the complete build
and test sequence:

$ antlr4 -visitor LExpr.g4➾
$ javac LExpr*.java TestLEvalVisitor.java➾
$ java TestLEvalVisitor➾
1+2*3➾
EOF➾
(s (e (e 1) + (e (e 2) * (e 3))))❮
visitor result = 7

Visitors work very well if we need application-specific return values because
we get to use the built-in Java return value mechanism. If we prefer not
having to explicitly invoke visitor methods to visit children, we can switch to
the listener mechanism. Unfortunately, that means giving up the cleanliness
of using Java method return values.

Simulating Return Values with a Stack

ANTLR generates listener event methods that return no values (void return
types). To return values to listener methods executing on nodes higher in the
parse tree, we can store partial results in a field of our listener. A stack of
values comes to mind, just as the Java runtime uses the CPU stack to store
method return values temporarily. The idea is to push the result of computing
a subexpression onto the stack. Methods for subexpressions further up the
parse tree pop operands off the stack. Here’s the full Evaluator calculator listener
(physically in file TestLEvaluator.java):

Chapter 7. Decoupling Grammars from Application-Specific Code • 120

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvalVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listeners/TestLEvaluator.java
public static class Evaluator extends LExprBaseListener {

Stack<Integer> stack = new Stack<Integer>();

public void exitMult(LExprParser.MultContext ctx) {
int right = stack.pop();
int left = stack.pop();
stack.push(left * right);

}

public void exitAdd(LExprParser.AddContext ctx) {
int right = stack.pop();
int left = stack.pop();
stack.push(left + right);

}

public void exitInt(LExprParser.IntContext ctx) {
stack.push(Integer.valueOf(ctx.INT().getText()));

}
}

To try this, we can create and use a ParseTreeWalker in test rig TestLEvaluator, fol-
lowing what we did in TestPropertyFile earlier in this chapter.

$ antlr4 LExpr.g4➾
$ javac LExpr*.java TestLEvaluator.java➾
$ java TestLEvaluator➾
1+2*3➾
EOF➾
(s (e (e 1) + (e (e 2) * (e 3))))❮
stack result = 7

Using a stack field is a bit awkward but works fine. We have to make sure
that the event methods push and pop things in the correct order across lis-
tener events. Visitors with return values do away with the awkwardness of
the stack but require that we manually visit the nodes of the tree. The third
option is to capture partial results by stashing them in tree nodes.

Annotating Parse Trees

Instead of using temporary storage to share data between event methods, we
can store those values in the parse tree itself. We can use this tree annotation
approach with both a listener and a visitor, but we’ll demonstrate how it
works using a listener here. Let’s start by looking at the LExpr grammar parse
tree for 1+2*3 annotated with partial results (Figure 8, The LExpr grammar
parse tree for 1+2*3, on page 122).

report erratum • discuss

Sharing Information Among Event Methods • 121

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluator.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

 e 7

 e 1 e 6+

1 e 2 e 3*

2 3

 s 7

Figure 8—The LExpr grammar parse tree for 1+2*3

Each subexpression corresponds to a subtree root (and to an e rule invocation).
The numbers pointed at by horizontal right arrows emanating from e nodes
are the partial results we’d like to “return.”

Adding Fields to Nodes via Rule Arguments and Return Values

If we didn’t care about tying our grammar to a particular language, we could simply
add a return value to the rule specification of interest.

e returns [int value]
: e '*' e # Mult
| e '+' e # Add
| INT # Int
;

ANTLR places all parameters and return values of rules into the associated context
object and so value ends up as a field of EContext.

public static class EContext extends ParserRuleContext {
public int value;
...

}

Because the alternative-specific context is derived from EContext, all listener methods
have access to this value. For example, listener methods could say ctx.value = 0;.

The approach shown here involves specifying that a rule method produces a result
value, which is stored in the rule’s context object. The specification uses target lan-
guage syntax and consequently ties the grammar to a particular target language.
However, the approach doesn’t necessarily tie the grammar to a particular application,
assuming that other applications can use the same rule result values. On the other
hand, if we need more than one return value or a return value of a different type for
a different application, this approach would not work.

Chapter 7. Decoupling Grammars from Application-Specific Code • 122

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Let’s see how the node annotation strategy would work for rule e from our
LExpr grammar.

listeners/LExpr.g4
e : e MULT e # Mult

| e ADD e # Add
| INT # Int
;

The listener methods for the alternatives of e would each store a result in the
corresponding e parse-tree node. Any subsequent add or multiply events on
nodes higher up in the parse tree would grab subexpression values by looking
at the values stored in their corresponding children.

If we assume, for the moment, that each parse-tree node (each rule context
object) has a field called value, then exitAdd() would look like this:

public void exitAdd(LExprParser.AddContext ctx) {
// e(0).value is the subexpression value of the first e in the alternative
ctx.value = ctx.e(0).value + ctx.e(1).value; // e '+' e # Add

}

That looks pretty reasonable, but unfortunately, we can’t extend class
ExprContext to add field value dynamically in Java (like Ruby and Python can).
To make parse-tree annotation work, we need a way to annotate the various
nodes without manually altering the associated node classes generated by
ANTLR. (Otherwise, ANTLR would overwrite our changes the next time it
generated code.)

The easiest way to annotate parse-tree nodes is to use a Map that associates
arbitrary values with nodes. For that reason, ANTLR provides a simple helper
class called ParseTreeProperty. Let’s build another calculator version called Evalu-
atorWithProps in file TestLEvaluatorWithProps.java that associates partial results with
LExpr parse-tree nodes using a ParseTreeProperty instance. Here’s the appropriate
definition at the start of our listener:

listeners/TestLEvaluatorWithProps.java
public static class EvaluatorWithProps extends LExprBaseListener {

/** maps nodes to integers with Map<ParseTree,Integer> */
ParseTreeProperty<Integer> values = new ParseTreeProperty<Integer>();

Caution: If you want to use your own field of type Map instead of ParseTreeProp-
erty, make sure to derive it from IdentityHashMap, not the usual HashMap. We need
to annotate specific nodes, testing by identity instead of equals(). Two e nodes
might be equals() but not the same physical node in memory.

report erratum • discuss

Sharing Information Among Event Methods • 123

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/LExpr.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

To annotate a node, we say values.put(node, value). To get a value associated with
a node, we say values.get(node). This is OK, but let’s create some helper methods
with obvious names to make the code easier to read.

listeners/TestLEvaluatorWithProps.java
public void setValue(ParseTree node, int value) { values.put(node, value); }
public int getValue(ParseTree node) { return values.get(node); }

Let’s start the listener methods with the simplest expression alternative, Int.
We want to annotate its parse-tree e node with the integer value of the INT
token it matches.

listeners/TestLEvaluatorWithProps.java
public void exitInt(LExprParser.IntContext ctx) {

String intText = ctx.INT().getText(); // INT # Int
setValue(ctx, Integer.valueOf(intText));

}

For addition subtrees, we get the value of the two subexpression children
(operands) and annotate the subtree root with the sum.

listeners/TestLEvaluatorWithProps.java
public void exitAdd(LExprParser.AddContext ctx) {

int left = getValue(ctx.e(0)); // e '+' e # Add
int right = getValue(ctx.e(1));
setValue(ctx, left + right);

}

Method exitMult() is the same except that the calculation uses multiply instead
of add.

Our test rig starts parsing at rule s, so we have to make sure that the parse-
tree root has the value of the e subtree. (Or, we could start parsing at e instead
of s.) To bubble up the value from the e node to the root s node, we implement
exitS().

listeners/TestLEvaluatorWithProps.java
/** Need to pass e's value out of rule s : e ; */
public void exitS(LExprParser.SContext ctx) {

setValue(ctx, getValue(ctx.e())); // like: int s() { return e(); }
}

Here’s how to launch the listener and print out the expression value from the
parse-tree root node:

listeners/TestLEvaluatorWithProps.java
ParseTreeWalker walker = new ParseTreeWalker();
EvaluatorWithProps evalProp = new EvaluatorWithProps();
walker.walk(evalProp, tree);
System.out.println("properties result = " +evalProp.getValue(tree));

Chapter 7. Decoupling Grammars from Application-Specific Code • 124

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/TestLEvaluatorWithProps.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

And here’s the build and test sequence:

$ antlr4 LExpr.g4➾
$ javac LExpr*.java TestLEvaluatorWithProps.java➾
$ java TestLEvaluatorWithProps➾
1+2*3➾
EOF➾
(s (e (e 1) + (e (e 2) * (e 3))))❮
properties result = 7

Now we’ve seen three implementations of the same calculator, and we’re
almost ready to put our knowledge to use building real examples. Because
each approach has its strengths and weaknesses, let’s review what we’ve
learned so far in this chapter and compare the different techniques.

Comparing Information Sharing Approaches

To get reusable and retargetable grammars, we need to keep them completely
clear of user-defined actions. This means putting all of the application-specific
code into some kind of listener or visitor external to the grammar. Listeners
and visitors operate on parse trees, and ANTLR automatically generates
appropriate tree-walking interfaces and default implementations. Since the
event method signatures are fixed and not application specific, we looked at
three ways event methods can share information.

• Native Java call stack: Visitor methods return a value of user-defined
type. If a visitor needs to pass parameters, it must also use one of the
next two techniques.

• Stack-based: A stack field simulates parameters and return values like
the Java call stack.

• Annotator: A map field annotates nodes with useful values.

All three are completely decoupled from the grammar itself and nicely
encapsulated in specialized objects. Beyond that, there are advantages and
disadvantages to each. The needs of our problem and personal taste dictate
which approach to take. There’s also no reason that we can’t use a variety of
solutions even within the same application.

Visitor methods read nicely because they directly call other visitor methods
to get partial results and can return values like any other method. That is
also their negative. The visitor methods must explicitly visit their children,
whereas the listeners do not. Because the visitor has a general interface, it
can’t define arguments. Visitors must use one of the other solutions to pass
arguments to visitor methods it calls on children. A visitor’s space efficiency

report erratum • discuss

Sharing Information Among Event Methods • 125

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

is good because it has to keep around only a few partial results at any one
time. There are no partial results hanging around after the tree walk. While
visitor methods can return values, each value must be of the same type,
unlike the other solutions.

The stack-based solution can simulate arguments and return values with a
stack, but there’s a chance of a disconnect when manually managing the
stack. This can occur because the listener methods aren’t calling each other
directly. As programmers, we have to make sure that what we push is
appropriately popped off by future event method calls. The stack can pass
multiple values and multiple return values. The stack-based solution is also
space efficient because it does not attach anything to the tree. All partial
results storage goes away after the tree walk.

The annotator is my default solution because it allows me to arbitrarily provide
information to event methods operating on nodes above and below in the
parse tree. I can pass multiple values around, and they can be of arbitrary
types. Annotation is better than using a stack with fleeting values in many
cases. There is less chance of a disconnect between the data-passing expec-
tations of the various methods. Annotating the tree with setValue(ctx, value) is
less intuitive than saying return value in a programming language but is more
general. The only disadvantage of this approach over the other two is that
the partial results are kept around during the tree walk and so it has a larger
memory footprint.

On the other hand, being able to annotate the tree is precisely what we need
in some applications, such as Section 8.4, Validating Program Symbol Usage,
on page 138. That application requires multiple passes over the tree, and it’s
convenient for the first pass to compute and squirrel away data in the tree.
The second pass then has easy access to the data as the parse-tree walker
rewalks the tree. All in all, tree annotation is extremely flexible and has an
acceptable memory burden.

Now that we know how to implement some basic language applications using
parse-tree listeners and visitors, it’s time to build some real tools based upon
these techniques. That’s exactly what we’ll do in the next chapter.

Chapter 7. Decoupling Grammars from Application-Specific Code • 126

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 8

Building Some Real Language Applications
Now that we know how to trigger application code via listeners and visitors,
it’s time to build some useful applications. We’ll construct four listeners of
increasing complexity based upon the CSV, JSON, and Cymbol grammars
from Chapter 6, Exploring Some Real Grammars, on page 83. (We could just
as easily use visitors.)

The first real application is a loader for CSV files that constructs a two-
dimensional list data structure. Then, we’ll figure out how to translate JSON
text files into XML text files. Next, we’ll read in Cymbol programs and visualize
the function call dependency graph using DOT/graphviz. Finally, we’ll build
a real symbol table for Cymbol programs that checks for undefined variables
or functions and verifies that variables and functions are used properly. The
checker needs to make multiple passes over the parse tree and, therefore,
demonstrates how to collect information in one pass and use it in the next.

Let’s get started with the simplest application.

8.1 Loading CSV Data

Our goal is to build a listener that loads comma-separated-value (CSV) data
into a nice “list of maps” data structure. This is the kind of thing that any
data format reader or even a configuration file reader would do. We’ll collect
the fields of each row into a map that associates a header name with a value.
So, given the following input:

listeners/t.csv
Details,Month,Amount
Mid Bonus,June,"$2,000"
,January,"""zippo"""
Total Bonuses,"","$5,000"

we’d like to see the following list of maps printed out:

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/t.csv
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[{Details=Mid Bonus, Month=June, Amount="$2,000"},
{Details=, Month=January, Amount="""zippo"""},
{Details=Total Bonuses, Month="", Amount="$5,000"}]

To get precise methods within our listener, let’s label each of the alternatives
in rule field from the CSV grammar we built in Section 6.1, Parsing Comma-
Separated Values, on page 84.

listeners/CSV.g4
grammar CSV;

file : hdr row+ ;
hdr : row ;

row : field (',' field)* '\r'? '\n' ;

field
: TEXT # text
| STRING # string
| # empty
;

TEXT : ~[,\n\r"]+ ;
STRING : '"' ('""'|~'"')* '"' ;

Other than that, the CSV grammar is the same as before.

We can start the implementation of our listener by defining the data structures
we’ll need. First, we need the main data structure, a list of maps called rows.
We also need a list of the column names found in the header row, header. To
process a row, we’ll read the field values into a temporary list, currentRowField-
Values, and then map the column names to those values as we finish each
row.

Here is the start of our listener:

listeners/LoadCSV.java
public static class Loader extends CSVBaseListener {

public static final String EMPTY = "";
/** Load a list of row maps that map field name to value */
List<Map<String,String>> rows = new ArrayList<Map<String, String>>();
/** List of column names */
List<String> header;
/** Build up a list of fields in current row */
List<String> currentRowFieldValues;

The following three rule methods process field values by computing the
appropriate string and adding it to the currentRowFieldValues:

Chapter 8. Building Some Real Language Applications • 128

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/CSV.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listeners/LoadCSV.java
public void exitString(CSVParser.StringContext ctx) {

currentRowFieldValues.add(ctx.STRING().getText());
}

public void exitText(CSVParser.TextContext ctx) {
currentRowFieldValues.add(ctx.TEXT().getText());

}

public void exitEmpty(CSVParser.EmptyContext ctx) {
currentRowFieldValues.add(EMPTY);

}

Before we can process the rows, we need to get the list of column names from
the first row. The header row is just another row syntactically, but we need
to treat it differently than a regular row of data. That means we need to check
context. For now, let’s assume that after exitRow() executes, currentRowFieldValues
contains a list of the column names. To fill in header, we just have to capture
the field values of that first row.

listeners/LoadCSV.java
public void exitHdr(CSVParser.HdrContext ctx) {

header = new ArrayList<String>();
header.addAll(currentRowFieldValues);

}

Turning to the rows themselves, we need two operations: one when we start
a row and one when we finish. When we start a row, we need to allocate (or
clear) currentRowFieldValues to prepare for getting a fresh set of data.

listeners/LoadCSV.java
public void enterRow(CSVParser.RowContext ctx) {

currentRowFieldValues = new ArrayList<String>();
}

At the end of a row, we have to consider context. If we just loaded the header
row, we don’t want to alter the rows field. The column names aren’t data. In
exitRow(), we can test context by looking at the getRuleIndex() value of our parent
node in the parse tree (or by asking if the parent is of type HdrContext). If the
current row is instead a data row, we create a map using values obtained by
simultaneously walking the column names in header and the values in
currentRowFieldValues.

listeners/LoadCSV.java
public void exitRow(CSVParser.RowContext ctx) {

// If this is the header row, do nothing
// if (ctx.parent instanceof CSVParser.HdrContext) return; OR:
if (ctx.getParent().getRuleIndex() == CSVParser.RULE_hdr) return;

report erratum • discuss

Loading CSV Data • 129

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

// It's a data row
Map<String, String> m = new LinkedHashMap<String, String>();
int i = 0;
for (String v : currentRowFieldValues) {

m.put(header.get(i), v);
i++;

}
rows.add(m);

}

And that’s all there is to loading the CSV data into a nice data structure. After
using a ParseTreeWalker to traverse the tree, our main() in LoadCSV can print out
the rows field.

listeners/LoadCSV.java
ParseTreeWalker walker = new ParseTreeWalker();
Loader loader = new Loader();
walker.walk(loader, tree);
System.out.println(loader.rows);

Here’s the build and test sequence:

$ antlr4 CSV.g4
$ javac CSV*.java LoadCSV.java
$ java LoadCSV t.csv
[{Details=Mid Bonus, Month=June, Amount="$2,000"}, {Details=, Month=January,
Amount="""zippo"""}, {Details=Total Bonuses, Month="", Amount="$5,000"}]

The other thing we might want to do after reading some data is to translate
it to a different language, which is what we’ll do in the next section.

8.2 Translating JSON to XML

Lots of web services return JSON data, and we might run into a situation
where we want to feed some JSON data into existing code that accepts only
XML. Let’s use our JSON grammar from Section 6.2, Parsing JSON, on page
86 as a foundation to build a JSON to XML translator. Our goal is to read in
JSON text like this:

listeners/t.json
{

"description" : "An imaginary server config file",
"logs" : {"level":"verbose", "dir":"/var/log"},
"host" : "antlr.org",
"admin": ["parrt", "tombu"],
"aliases": []

}

and emit XML in an equivalent form, like this:

Chapter 8. Building Some Real Language Applications • 130

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/LoadCSV.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/t.json
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

<description>An imaginary server config file</description>
<logs>

<level>verbose</level>
<dir>/var/log</dir>

</logs>
<host>antlr.org</host>
<admin>

<element>parrt</element>
<element>tombu</element>

</admin>
<aliases></aliases>

where <element> is a tag we need to conjure up during translation.

As we did with the CSV grammar, let’s label some of the alternatives in the
JSON grammar to get ANTLR to generate more precise listener methods.

listeners/JSON.g4
object

: '{' pair (',' pair)* '}' # AnObject
| '{' '}' # EmptyObject
;

array
: '[' value (',' value)* ']' # ArrayOfValues
| '[' ']' # EmptyArray
;

We’ll do the same thing for rule value, but with a twist. All but three of the
alternatives just have to return the text of the value matched by the alternative.
We can use the same label for all of them, causing the parse-tree walker to
trigger the same listener method for those alternatives.

listeners/JSON.g4
value

: STRING # String
| NUMBER # Atom
| object # ObjectValue
| array # ArrayValue
| 'true' # Atom
| 'false' # Atom
| 'null' # Atom
;

To implement our translator, it makes sense to have each rule return the
XML equivalent of the input phrase matched by the rule. To track these partial
results, we’ll annotate the parse tree using field xml and two helper methods.

report erratum • discuss

Translating JSON to XML • 131

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listeners/JSON2XML.java
public static class XMLEmitter extends JSONBaseListener {

ParseTreeProperty<String> xml = new ParseTreeProperty<String>();
String getXML(ParseTree ctx) { return xml.get(ctx); }
void setXML(ParseTree ctx, String s) { xml.put(ctx, s); }

We’ll attach the translated string for each subtree to the root of that subtree.
Methods working on nodes further up the parse tree can grab those values to
compute larger strings. The string attached to the root node is then the complete
translation.

Let’s start with the easiest translation. The Atom alternatives of value “return”
(annotate the Atom node with) the text of the matched token (ctx.getText() gets the
text matched by that rule invocation).

listeners/JSON2XML.java
public void exitAtom(JSONParser.AtomContext ctx) {

setXML(ctx, ctx.getText());
}

Strings are basically the same except we have to strip off the double quotes
(stripQuotes() is a helper method in the file).

listeners/JSON2XML.java
public void exitString(JSONParser.StringContext ctx) {

setXML(ctx, stripQuotes(ctx.getText()));
}

If the value() rule method finds an object or array, it can copy the partial
translation for that composite element to its own parse-tree node. Here’s how
to do it for objects:

listeners/JSON2XML.java
public void exitObjectValue(JSONParser.ObjectValueContext ctx) {

// analogous to String value() {return object();}
setXML(ctx, getXML(ctx.object()));

}

Once we can translate all of the values, we need to worry about name-value pairs
and converting them to tags and text. The tag name for the resulting XML is
derived from the STRING in the STRING ':' value alternative. The text in between the
open and close tags is derived from the text attached to the value child.

listeners/JSON2XML.java
public void exitPair(JSONParser.PairContext ctx) {

String tag = stripQuotes(ctx.STRING().getText());
JSONParser.ValueContext vctx = ctx.value();
String x = String.format("<%s>%s</%s>\n", tag, getXML(vctx), tag);
setXML(ctx, x);

}

Chapter 8. Building Some Real Language Applications • 132

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

JSON objects consist of name-value pairs. So, for every pair found by object
in the alternative marked by AnObject, we append the results computed here
in the parse tree:

listeners/JSON2XML.java
public void exitAnObject(JSONParser.AnObjectContext ctx) {

StringBuilder buf = new StringBuilder();
buf.append("\n");
for (JSONParser.PairContext pctx : ctx.pair()) {

buf.append(getXML(pctx));
}
setXML(ctx, buf.toString());

}
public void exitEmptyObject(JSONParser.EmptyObjectContext ctx) {

setXML(ctx, "");
}

Processing arrays follows a similar pattern, simply joining the list of results
from child nodes and then wrapping them in <element> tags.

listeners/JSON2XML.java
public void exitArrayOfValues(JSONParser.ArrayOfValuesContext ctx) {

StringBuilder buf = new StringBuilder();
buf.append("\n");
for (JSONParser.ValueContext vctx : ctx.value()) {

buf.append("<element>"); // conjure up element for valid XML
buf.append(getXML(vctx));
buf.append("</element>");
buf.append("\n");

}
setXML(ctx, buf.toString());

}

public void exitEmptyArray(JSONParser.EmptyArrayContext ctx) {
setXML(ctx, "");

}

Finally, we need annotate the root of the parse tree with the overall translation,
collected from an object or array.

listeners/JSON.g4
json: object

| array
;

We can do that in our listener with a simple set operation.

listeners/JSON2XML.java
public void exitJson(JSONParser.JsonContext ctx) {

setXML(ctx, getXML(ctx.getChild(0)));
}

report erratum • discuss

Translating JSON to XML • 133

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/JSON2XML.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Here’s the build and test sequence:

$ antlr4 JSON.g4
$ javac JSON*.java
$ java JSON2XML t.json

<description>An imaginary server config file</description>
<logs>
<level>verbose</level>
...

Translations are not always as straightforward as JSON to XML. But, this
example shows us how to approach the problem of sentence translation by
piecing together partially translated phrases. (If you look in the source code
directory, you’ll also see a version that uses StringTemplate,1 JSON2XML_ST.java,
to generate output and another that builds XML DOM trees, JSON2XML_DOM.java.)

OK, enough playing around with data. Let’s do something interesting with a
programming language.

8.3 Generating a Call Graph

Software is hard to write and maintain, which is why we try to build tools to
increase our productivity and effectiveness. For example, over the past decade
we’ve seen an explosion of testing frameworks, code coverage tools, and code
analyzers. It’s also nice to see a class hierarchy visually as a tree, and most
development environments support this. The other visualization I like is called
a call graph, which has functions as nodes and function calls as directed
edges between the nodes.

In this section, we’re going to build a call graph generator using the Cymbol
grammar from Section 6.4, Parsing Cymbol, on page 98. I think you’ll be
surprised at how simple it is, especially given how cool the results are. To
give you an idea of what we’re trying to achieve, consider the following set of
functions and function calls:

listeners/t.cymbol
int main() { fact(); a(); }

float fact(int n) {
print(n);

if (n==0) then return 1;
return n * fact(n-1);

}

1. http://www.stringtemplate.org

Chapter 8. Building Some Real Language Applications • 134

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/t.cymbol
http://www.stringtemplate.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

void a() { int x = b(); if false then {c(); d();} }
void b() { c(); }
void c() { b(); }
void d() { }
void e() { }

We’d like to visualize the call graph like this:

main

fact a

print b

c

d

e

The good thing about visualizations is that the human eye can easily pick
out aberrations. For example, the e() node is an orphan, which means that
no one calls it and it is therefore dead code. At a glance, we found a function
to jettison. We can also detect recursion very easily by looking for cycles in
the graph such as fact() → fact() and b() → c() → b().

To visualize a call graph, we need to read in a Cymbol program and create a
DOT file (and then view it with graphviz). For example, here is the DOT we need
to generate for file t.cymbol from the earlier example:

digraph G {
ranksep=.25;
edge [arrowsize=.5]
node [shape=circle, fontname="ArialNarrow",

fontsize=12, fixedsize=true, height=.45];
main; fact; a; b; c; d; e;
main -> fact;
main -> a;
fact -> print;
fact -> fact;
a -> b;
a -> c;
a -> d;
b -> c;
c -> b;

}

report erratum • discuss

Generating a Call Graph • 135

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The output consists of boilerplate setup statements such as ranksep=.25; and
then a list of nodes and edges. To catch orphan nodes, we need to make sure
to generate a node definition for each function name, even if it has no
incoming or outgoing edges. It would not appear in the graph otherwise. Note
the e on the end of the node definition line.

main; fact; a; b; c; d; e;

Our strategy is straightforward. When the parser finds a function declaration,
our application will add the name of the current function to a list and set a
field called currentFunctionName. When the parser sees a function call, our ap-
plication will record an edge from the currentFunctionName to the callee’s function
name.

To get started, let’s label some rule alternatives in Cymbol.g4 to get more precise
listener methods.

listeners/Cymbol.g4
expr: ID '(' exprList? ')' # Call

| expr '[' expr ']' # Index
| '-' expr # Negate
| '!' expr # Not
| expr '*' expr # Mult
| expr ('+'|'-') expr # AddSub
| expr '==' expr # Equal
| ID # Var
| INT # Int
| '(' expr ')' # Parens
;

Then, as a foundation for our language application, let’s encapsulate all of
the graph-related stuff into a class.

listeners/CallGraph.java
static class Graph {

// I'm using org.antlr.v4.runtime.misc: OrderedHashSet, MultiMap
Set<String> nodes = new OrderedHashSet<String>(); // list of functions
MultiMap<String, String> edges = // caller->callee

new MultiMap<String, String>();
public void edge(String source, String target) {

edges.map(source, target);
}

From the collection of nodes and edges, we can dump out the appropriate
DOT code using a little bit of Java in toDOT() of class Graph.

listeners/CallGraph.java
public String toDOT() {

StringBuilder buf = new StringBuilder();
buf.append("digraph G {\n");

Chapter 8. Building Some Real Language Applications • 136

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

buf.append(" ranksep=.25;\n");
buf.append(" edge [arrowsize=.5]\n");
buf.append(" node [shape=circle, fontname=\"ArialNarrow\",\n");
buf.append(" fontsize=12, fixedsize=true, height=.45];\n");
buf.append(" ");
for (String node : nodes) { // print all nodes first

buf.append(node);
buf.append("; ");

}
buf.append("\n");
for (String src : edges.keySet()) {

for (String trg : edges.get(src)) {
buf.append(" ");
buf.append(src);
buf.append(" -> ");
buf.append(trg);
buf.append(";\n");

}
}
buf.append("}\n");
return buf.toString();

}

Now all we have to do is fill in those data structures using a listener. The
listener needs two fields for bookkeeping.

listeners/CallGraph.java
static class FunctionListener extends CymbolBaseListener {

Graph graph = new Graph();
String currentFunctionName = null;

And our application only needs to listen for two events. First, it has to record
the current function name as the parser finds function declarations.

listeners/CallGraph.java
public void enterFunctionDecl(CymbolParser.FunctionDeclContext ctx) {

currentFunctionName = ctx.ID().getText();
graph.nodes.add(currentFunctionName);

}

Then, when the parser detects a function call, the application records an edge
from the current function to the invoked function.

listeners/CallGraph.java
public void exitCall(CymbolParser.CallContext ctx) {

String funcName = ctx.ID().getText();
// map current function to the callee
graph.edge(currentFunctionName, funcName);

}

report erratum • discuss

Generating a Call Graph • 137

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Notice that the function calls can’t hide inside nested code blocks or declara-
tions such as in a().

void a() { int x = b(); if false then {c(); d();} }

The tree walker triggers listener method exitCall() regardless of where it finds
function calls.

With the parse tree and class FunctionListener, we can launch a walker with our
listener to generate output.

listeners/CallGraph.java
ParseTreeWalker walker = new ParseTreeWalker();
FunctionListener collector = new FunctionListener();
walker.walk(collector, tree);
System.out.println(collector.graph.toString());
System.out.println(collector.graph.toDOT());

Before dumping the DOT string, that code prints out the list of functions and
edges.

$ antlr4 Cymbol.g4
$ javac Cymbol*.java CallGraph.java
$ java CallGraph t.cymbol
edges: {main=[fact, a], fact=[print, fact], a=[b, c, d], b=[c], c=[b]},
functions: [main, fact, a, b, c, d, e]
digraph G {

ranksep=.25;
edge [arrowsize=.5]

...

Naturally, to view the call graph, cut and paste just the output starting with
digraph G {.

With very little code, we were able to build a call graph generator in this sec-
tion. To demonstrate that our Cymbol grammar is reusable, we’re going to
use it again without modification in the next section to build a totally different
application. Not only that, but we’ll make two passes over the same tree with
two different listeners.

8.4 Validating Program Symbol Usage

To build an interpreter, compiler, or translator for a programming language
such as Cymbol, we’d need to verify that Cymbol programs used symbols
(identifiers) properly. In this section, we’re going to build a Cymbol validator
that checks the following conditions:

• Variable references have corresponding definitions that are visible to them
(in scope).

Chapter 8. Building Some Real Language Applications • 138

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/CallGraph.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

• Function references have corresponding definitions (functions can appear
in any order).

• Variables are not used as functions.

• Functions are not used as variables.

To check all these conditions, we have a bit of work to do, so this example is
going to take a little bit longer than the others to absorb. But, our reward will
be a great base from which to build real language tools.

Let’s get started by taking a look at some sample Cymbol code with lots of
different references, some of which are invalid.

listeners/vars.cymbol
int f(int x, float y) {

g(); // forward reference is ok
i = 3; // no declaration for i (error)
g = 4; // g is not variable (error)
return x + y; // x, y are defined, so no problem

}

void g() {
int x = 0;
float y;
y = 9; // y is defined
f(); // backward reference is ok
z(); // no such function (error)
y(); // y is not function (error)
x = f; // f is not a variable (error)

}

To verify that everything is OK within a program according to the previous
conditions, we should print out the list of functions and their local variables
plus the list of global symbols (functions and global variables). Further, we
should emit an error when we find a problem. For example, for the previous
input, let’s build an application called CheckSymbols that generates the following:

$ java CheckSymbols vars.cymbol➾
locals:[]❮
function<f:tINT>:[<x:tINT>, <y:tFLOAT>]
locals:[x, y]
function<g:tVOID>:[]
globals:[f, g]
line 3:4 no such variable: i
line 4:4 g is not a variable
line 13:4 no such function: z
line 14:4 y is not a function
line 15:8 f is not a variable

report erratum • discuss

Validating Program Symbol Usage • 139

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/vars.cymbol
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The key to implementing this kind of problem is an appropriate data structure
called a symbol table. Our application will store symbols in the symbol table
and then check identifier references for correctness by looking them up in
the symbol table. In the next section, we’ll take a peek at what the data
structure looks like and then use it to solve the validation problem at hand.

A Crash Course in Symbol Tables

Language implementers typically call the data structure that holds symbols
a symbol table. The language being implemented dictates a symbol table’s
structure and complexity. If a programming language allows the same identi-
fier to mean different things in different contexts, the symbol table groups
symbols into scopes. A scope is just a set of symbols such as a list of
parameters for a function or the list of variables and functions in a global
scope.

The symbol table by itself is just a repository of symbol definitions—it doesn’t
do any checking. To validate code, we need to check the variable and function
references in expressions against the rules we set up earlier. There are two
fundamental operations for symbol validation: defining symbols and resolving
symbols. Defining a symbol means adding it to a scope. Resolving a symbol
means figuring out which definition the symbol refers to. In some sense,
resolving a symbol means finding the “closest” matching definition. The
closest scope is the closest enclosing scope. For example, let’s look at another
Cymbol example that has symbol definitions in different scopes (labeled with
circumscribed numbers).

listeners/vars2.cymbol
int x;❶
int y;
void a()❷
{❸

int x;
x = 1; // x resolves to current scope, not x in global scope
y = 2; // y is not found in current scope, but resolves in global
{ int y = x; }❹

}
void b(int z)❺
{ }❻

The global scope, ❶, contains variables x and y as well as the functions a()
and b(). Functions live in the global scope, but they also constitute new scopes
that hold the functions’ parameters, if any: ❷ and ❺. Also nested within a
function scope is the function’s local code block (❸ and ❻), which constitutes

Chapter 8. Building Some Real Language Applications • 140

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/vars2.cymbol
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

another new scope. Local variables are held in local scopes (❸, ❹, and ❻)
nested within the function scopes.

Because symbol x is defined twice, we can’t just stuff all of our identifiers into
a single set without collision. That’s where scopes come in. We keep a set of
scopes and allow only a single definition for each identifier in a scope. We
also keep a pointer to the parent scope so that we can find symbol definitions
in outer scopes. The scopes form a tree.

name = "a"
symbols = []

FunctionSymbol

symbols = [x, y, a, b]
GlobalScope

symbols = [x]
LocalScope

name = "b"
symbols = [z]

FunctionSymbol

level 0

level 1

level 2

2

3

5

1

Scope nesting level

level 3symbols = [y]
LocalScope

6

4

symbols = []
LocalScope

The circled numbers refer to the scope from the source code. The nodes along
the path from any scope to the root (global scope) form a stack of scopes. To
find a symbol’s definition, we start in the scope surrounding the reference
and walk up the scope tree until we find its definition.

Rather than reimplement an appropriate symbol table just for this example,
I’ve copied the symbol table source code2 from Chapter 6 of Language
Implementation Patterns [Par09]. I encourage you to look through the source
for BaseScope, GlobalScope, LocalScope, Symbol, FunctionSymbol, and VariableSymbol to get
a feel for the implementation. Together, those classes embody the symbol
table, and we’ll assume that they just work. With a symbol table in place,
we’re ready to build our validator.

Validator Architecture

To begin building our validator, let’s think about the big picture and form an
overall strategy. We can break this problem down according to the key oper-
ations: define and resolve. For definitions, we need to listen for variable and
function definition events and insert Symbol objects into the scope surrounding
that definition. At the start of a function, we need to “push” a new scope and
then pop it at the end of that function definition.

2. http://pragprog.com/book/tpdsl/language-implementation-patterns

report erratum • discuss

Validating Program Symbol Usage • 141

www.it-ebooks.info

http://pragprog.com/book/tpdsl/language-implementation-patterns
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

To resolve and check symbol references, we need to listen for variable and function
name references within expressions. For each reference, we’ll verify that there is
a matching definition and that the reference uses the symbol properly.

That seems straightforward, but there’s a complication: a Cymbol program
can call a function defined after it in the source file. We call that a forward
reference. To support them, we need to make two passes over the parse tree.
The first pass, or phase, defines the symbols including the functions, and the
second pass does the resolutions. In this way, the second pass can see all
functions in the file. Here’s the code in the test rig that triggers both passes
over the parse tree:

listeners/CheckSymbols.java
ParseTreeWalker walker = new ParseTreeWalker();
DefPhase def = new DefPhase();
walker.walk(def, tree);
// create next phase and feed symbol table info from def to ref phase
RefPhase ref = new RefPhase(def.globals, def.scopes);
walker.walk(ref, tree);

During the definition phase, we’ll be creating lots of scopes. Unless we keep
references to them, the garbage collector will throw the scopes out. For the
symbol table to survive the transition from the definition to the resolution
phase, we need to track those scopes. The most logical place to squirrel them
away is in the parse tree itself (or, technically, using an annotation map that
associates values with tree nodes). The reference phase can then simply pick
up the current scope pointer as it descends the parse tree. Tree nodes asso-
ciated with functions and local blocks will get pointers to their scopes.

Defining and Resolving Symbols

With our general strategy in mind, let’s build our validator, starting with the
DefPhase. Our phase classes need three fields: a reference to a global scope, a
parse tree annotator to track the scopes we create, and a pointer to the current
scope. The listener code for enterFile() starts off the activity, creating the global
scope. At the end, exitFile() is responsible for printing the results.

listeners/DefPhase.java
public class DefPhase extends CymbolBaseListener {

ParseTreeProperty<Scope> scopes = new ParseTreeProperty<Scope>();
GlobalScope globals;
Scope currentScope; // define symbols in this scope
public void enterFile(CymbolParser.FileContext ctx) {

globals = new GlobalScope(null);
currentScope = globals;

}

Chapter 8. Building Some Real Language Applications • 142

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/CheckSymbols.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/DefPhase.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

public void exitFile(CymbolParser.FileContext ctx) {
System.out.println(globals);

}

When the parser finds a function declaration, our application needs to create
a FunctionSymbol object. FunctionSymbol objects do double duty as a symbol and
as the scope containing the arguments. To nest the function scope within the
global scope, we “push” the function scope. We do that by setting the function’s
enclosing scope to be the current scope and resetting the current scope.

listeners/DefPhase.java
public void enterFunctionDecl(CymbolParser.FunctionDeclContext ctx) {

String name = ctx.ID().getText();
int typeTokenType = ctx.type().start.getType();
Symbol.Type type = CheckSymbols.getType(typeTokenType);

// push new scope by making new one that points to enclosing scope
FunctionSymbol function = new FunctionSymbol(name, type, currentScope);
currentScope.define(function); // Define function in current scope
saveScope(ctx, function); // Push: set function's parent to current
currentScope = function; // Current scope is now function scope

}

void saveScope(ParserRuleContext ctx, Scope s) { scopes.put(ctx, s); }

Method saveScope() annotates the functionDecl rule node with the function scope
so our reference phase can pick it up later. As we leave a function, we pop
the function scope so that the current scope is again the global scope.

listeners/DefPhase.java
public void exitFunctionDecl(CymbolParser.FunctionDeclContext ctx) {

System.out.println(currentScope);
currentScope = currentScope.getEnclosingScope(); // pop scope

}

Local scopes work in a similar way. We push a scope in listener method
enterBlock() and pop it in exitBlock().

Now that we’ve taken care of the scopes and function definitions, let’s define
the arguments and variables.

listeners/DefPhase.java
public void exitFormalParameter(CymbolParser.FormalParameterContext ctx) {

defineVar(ctx.type(), ctx.ID().getSymbol());
}

public void exitVarDecl(CymbolParser.VarDeclContext ctx) {
defineVar(ctx.type(), ctx.ID().getSymbol());

}

report erratum • discuss

Validating Program Symbol Usage • 143

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/DefPhase.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/DefPhase.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/DefPhase.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

void defineVar(CymbolParser.TypeContext typeCtx, Token nameToken) {
int typeTokenType = typeCtx.start.getType();
Symbol.Type type = CheckSymbols.getType(typeTokenType);
VariableSymbol var = new VariableSymbol(nameToken.getText(), type);
currentScope.define(var); // Define symbol in current scope

}

That finishes up the definition phase.

To build our reference phase, let’s start by setting the current scope to the
global scope passed to us from the definition phase.

listeners/RefPhase.java
public RefPhase(GlobalScope globals, ParseTreeProperty<Scope> scopes) {

this.scopes = scopes;
this.globals = globals;

}
public void enterFile(CymbolParser.FileContext ctx) {

currentScope = globals;
}

Then, as the tree walker triggers enter and exit events for Cymbol functions
and blocks, our listener methods keep currentScope up-to-date by accessing
values stored in the tree during the definition phase.

listeners/RefPhase.java
public void enterFunctionDecl(CymbolParser.FunctionDeclContext ctx) {

currentScope = scopes.get(ctx);
}
public void exitFunctionDecl(CymbolParser.FunctionDeclContext ctx) {

currentScope = currentScope.getEnclosingScope();
}

public void enterBlock(CymbolParser.BlockContext ctx) {
currentScope = scopes.get(ctx);

}
public void exitBlock(CymbolParser.BlockContext ctx) {

currentScope = currentScope.getEnclosingScope();
}

With the scopes set appropriately as the walker proceeds, we can resolve
symbols by implementing listener methods for variable references and function
calls. When the walker encounters a variable reference, it calls exitVar(), which
uses resolve() to try to find the name in the current scope’s symbol table. If
resolve() doesn’t find the symbol in the current scope, it looks up the enclosing
scope chain. If necessary, resolve() will look all the way up to the global scope.
It returns null if it can’t find a suitable definition. If, however, resolve() finds a
symbol but it’s a function, not a variable, we need to generate an error
message.

Chapter 8. Building Some Real Language Applications • 144

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/RefPhase.java
http://media.pragprog.com/titles/tpantlr2/code/listeners/RefPhase.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

listeners/RefPhase.java
public void exitVar(CymbolParser.VarContext ctx) {

String name = ctx.ID().getSymbol().getText();
Symbol var = currentScope.resolve(name);
if (var==null) {

CheckSymbols.error(ctx.ID().getSymbol(), "no such variable: "+name);
}
if (var instanceof FunctionSymbol) {

CheckSymbols.error(ctx.ID().getSymbol(), name+" is not a variable");
}

}

Handling function calls is basically the same. We emit an error if we can’t
find a definition or we find a variable, not a function.

Finally, here’s the build and test sequence that shows the desired output
from earlier:

$ antlr4 Cymbol.g4
$ javac Cymbol*.java CheckSymbols.java *Phase.java *Scope.java *Symbol.java
$ java CheckSymbols vars.cymbol
locals:[]
function<f:tINT>:[<x:tINT>, <y:tFLOAT>]
...

With both passes complete, we’ve finished our symbol validator. We had to
cover a lot ground, but the effort is worthwhile because this example is a
great starting point for creating your own language tools. The implementation
of the listeners is only about 150 lines of Java, with the symbol table support
code coming in at another 100. If you’re not actively building a tool that needs
a symbol table at the moment, don’t sweat the details here. The takeaway is
that there is a well-known solution to tracking and validating symbols that’s
not rocket science. To learn more about symbol table management, I shame-
lessly suggest you purchase and dig through Language Implementation Patterns
[Par09].

If you’ve been following along pretty well so far in this section of the book,
you’re in great shape! Not only can you build grammars by digging through
language reference manuals, you can bring those grammars to life to perform
useful tasks by implementing listeners. Certainly there are language problems
out there you might have difficulty with at this point, but your kung fu is very
strong.

This chapter finishes Part II of the book. Once you have some experience
using these key ANTLR skills, you’ll want to jump into the next part to learn
about advanced ANTLR usage.

report erratum • discuss

Validating Program Symbol Usage • 145

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/listeners/RefPhase.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Part III

Advanced Topics

In Part II, we learned how to abstract language
structure (syntax) from language samples and ref-
erence manuals and then how to formally describe
syntax with ANTLR grammars. To develop language
applications, we built several tree listeners and
visitors that operated on automatically generated
parse trees. Now we have the keys to effectively
use ANTLR for most problems.

Part III is about advanced usages of ANTLR. First,
we’ll examine ANTLR’s automatic error handling
mechanism. Then, we’ll explore how to embed code
snippets directly within a grammar in order to
generate output or perform computations on-the-fly
during the parse. Then we’ll see how to dynamically
turn alternatives in the grammar on and off based
upon runtime information using semantic predi-
cates. Finally, we’ll perform some lexical black
magic.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Error Reporting and Recovery
As we develop a grammar, there will be lots of mistakes to fix just like any
piece of software. The resulting parser won’t recognize all valid sentences
until we finish (and debug) our grammar. In the meantime, informative error
messages help us track down grammar problems. Once we have a correct
grammar, we then have to deal with ungrammatical sentences entered by
users or even ungrammatical sentences generated by other programs gone
awry.

In both situations, the manner in which our parser responds to ungrammat-
ical input is an important productivity consideration. In other words, a
parser that responds with “Eh?” and bails out upon the first syntax error isn’t
very useful for us during development or for our users during deployment.

Developers using ANTLR get a good error reporting facility and a sophisticated
error recovery strategy for free. ANTLR generates parsers that automatically
emit rich error messages upon syntax error and successfully resynchronize
much of the time. The parsers even avoid generating more than a single error
message for each syntax error.

In this chapter, we’ll learn about the automatic error reporting and recovery
strategy used by ANTLR-generated parsers. We’ll also see how to alter the
default error handling mechanism to suit atypical needs and how to customize
error messages for a specific application domain.

9.1 A Parade of Errors

The best way to describe ANTLR’s error recovery strategy is to watch an
ANTLR-generated parser respond to erroneous input. Let’s look at a grammar
for a simple Java-like language containing class definitions with field and
method members. The methods have simple statements and expressions.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We’ll use it as the core of the examples in this section and the remainder of
the chapter.

errors/Simple.g4
grammar Simple;

prog: classDef+ ; // match one or more class definitions

classDef
: 'class' ID '{' member+ '}' // a class has one or more members

{System.out.println("class "+$ID.text);}
;

member
: 'int' ID ';' // field definition

{System.out.println("var "+$ID.text);}
| 'int' f=ID '(' ID ')' '{' stat '}' // method definition

{System.out.println("method: "+$f.text);}
;

stat: expr ';'
{System.out.println("found expr: "+$stat.text);}

| ID '=' expr ';'
{System.out.println("found assign: "+$stat.text);}

;

expr: INT
| ID '(' INT ')'
;

INT : [0-9]+ ;
ID : [a-zA-Z]+ ;
WS : [\t\r\n]+ -> skip ;

The embedded actions print out elements as the parser finds them. We’re
using embedded actions instead of a parse-tree listener for simplicity and
brevity. We’ll learn more about actions in Chapter 10, Attributes and Actions,
on page 175.

First, let’s run the parser with some valid input to observe the normal output.

$ antlr4 Simple.g4➾
$ javac Simple*.java➾
$ grun Simple prog➾
class T { int i; }➾
EOF➾
var i❮
class T

Chapter 9. Error Reporting and Recovery • 150

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Simple.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We get no errors from the parser, and it executes the print statements to
report proper recognition of variable i and class definition T.

Now, let’s try a class with a method definition containing a bogus assignment
expression.

$ grun Simple prog -gui➾
class T {➾

int f(x) { a = 3 4 5; }➾
}➾
EOF➾
line 2:19 mismatched input '4' expecting ';'❮
method: f
class T

At the 4 token, the parser doesn’t find the ; it was expecting and reports an
error. The line 2:19 indicates that the offending token was found on the second
line at the twentieth character position (character positions start from zero).
Because of the -gui option, we also see the parse tree with error nodes high-
lighted (more on this in a moment).

classDef

prog

a

member

)

class {

=

statf

expr

x }

4 5 ;

{

T

int (

}

3

In this case, there are two extra tokens, and the parser gives a generic error
message about the mismatch. If there is just a single extra token, however,
the parser can be a little bit smarter, indicating it’s an extraneous token. In
the following test run, there is an extraneous ; after the class name and before
the start of the class body:

$ grun Simple prog➾
class T ; { int i; }➾
EOF➾
line 1:8 extraneous input ';' expecting '{'❮
var i
class T

report erratum • discuss

A Parade of Errors • 151

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The parser reports an error at the ; but gives a slightly more informative
answer because it knows that the next token is what it was actually looking
for. This feature is called single-token deletion because the parser can simply
pretend the extraneous token isn’t there and keep going.

Language Theory Humor

Apparently, the great Niklaus Wirtha had an excellent sense of humor. He used to
joke that in Europe people called him by “reference” (properly pronouncing his name
“Ni-klaus Virt”) and that in America people called him by “value” (pronouncing his
name “Nickle-less Worth”).

At the Compiler Construction 1994 conference, Kristen Nygaardb (inventor of Simula)
told a story about how, while teaching a language theory course, he commented that
“Strong typing is fascism,” referring to his preference for languages that are loose
with types. A student came up to him afterward and asked why typing hard on the
keyboard was fascism.

a. See http://en.wikipedia.org/wiki/Niklaus_Wirth.
b. See http://en.wikipedia.org/wiki/Kristen_Nygaard.

Similarly, the parser can do single-token insertion when it detects a missing
token. Let’s chop off the closing } to see what happens.

$ grun Simple prog➾
class T {➾

int f(x) { a = 3; }➾
EOF➾
found assign: a=3;❮
method: f
line 3:0 missing '}' at '<EOF>'
class T

The parser reports that it couldn’t find the required ending } token.

Another common syntax error occurs when the parser is at a decision point
and the remaining input isn’t consistent with any of the alternatives of that
rule or subrule. For example, if we forget the variable name in a field declara-
tion, neither of the alternatives in rule member will match. The parser reports
that there is no viable alternative.

$ grun Simple prog➾
class T { int ; }➾
EOF➾
line 1:14 no viable alternative at input 'int;'❮
class T

Chapter 9. Error Reporting and Recovery • 152

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/Kristen_Nygaard
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

There is no space between int and ; because we told the lexer to skip() in the
whitespace WS() rule.

If there are lexical errors, ANTLR also emits an error message indicating the
character or characters it could not match as part of a token. For example,
if we send in a completely unknown character, we get a token recognition
error.

$ grun Simple prog➾
class # { int i; }➾
EOF➾
line 1:6 token recognition error at: '#'❮
line 1:8 missing ID at '{'
var i
class <missing ID>

Since we did not give a valid class name, the single-token insertion mechanism
conjured up the name missing ID so that the class name token was non-null.
To take control of how the parser conjures up tokens, override getMissingSymbol()
in DefaultErrorStrategy (see Section 9.5, Altering ANTLR's Error Handling Strategy,
on page 171).

You might have noticed that the sample runs in this section show the actions
executing as expected, despite the presence of errors. Aside from producing
good error messages and resynchronizing the input by consuming tokens,
parsers also have to bounce to an appropriate location in the generated code.

For example, when matching members via rule member in rule classDef, the
parser should not bail out of classDef upon a bad member definition. That’s
why the parser is still able to execute those actions—a syntax error does not
cause the parser to exit the rule. The parser tries really hard to keep looking
for a valid class definition. We’ll learn all about this topic in Section 9.3,
Automatic Error Recovery Strategy, on page 158. But first, let’s look at altering
standard error reporting to help with grammar debugging and to provide
better messages for our users.

9.2 Altering and Redirecting ANTLR Error Messages

By default, ANTLR sends all errors to standard error, but we can change the
destination and the content by providing an implementation of interface
ANTLRErrorListener. The interface has a syntaxError() method that applies to both
lexers and parsers. Method syntaxError() receives all sorts of information about
the location of the error as well as the error message. It also receives a refer-
ence to the parser, so we can query it about the state of recognition.

report erratum • discuss

Altering and Redirecting ANTLR Error Messages • 153

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

For example, here’s an error listener (in test rig TestE_Listener.java) that prints
out the rule invocation stack followed by the usual error message augmented
with offending token information:

errors/TestE_Listener.java
public static class VerboseListener extends BaseErrorListener {

@Override
public void syntaxError(Recognizer<?, ?> recognizer,

Object offendingSymbol,
int line, int charPositionInLine,
String msg,
RecognitionException e)

{
List<String> stack = ((Parser)recognizer).getRuleInvocationStack();
Collections.reverse(stack);
System.err.println("rule stack: "+stack);
System.err.println("line "+line+":"+charPositionInLine+" at "+

offendingSymbol+": "+msg);
}

}

With this definition, our application can easily add an error listener to the
parser before invoking the start rule.

errors/TestE_Listener.java
SimpleParser parser = new SimpleParser(tokens);
parser.removeErrorListeners(); // remove ConsoleErrorListener
parser.addErrorListener(new VerboseListener()); // add ours
parser.prog(); // parse as usual

Right before we add our error listener, we need to remove the standard console
error listener so that we don’t get repeated error messages.

Let’s see what the error messages look like now for a class definition containing
an extra class name and missing field name.

$ javac TestE_Listener.java➾
$ java TestE_Listener➾
class T T {➾

int ;➾
}➾
EOF➾
rule stack: [prog, classDef]❮
line 1:8 at [@2,8:8='T',<9>,1:8]: extraneous input 'T' expecting '{'
rule stack: [prog, classDef, member]
line 2:6 at [@5,18:18=';',<8>,2:6]: no viable alternative at input 'int;'
class T

Chapter 9. Error Reporting and Recovery • 154

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/TestE_Listener.java
http://media.pragprog.com/titles/tpantlr2/code/errors/TestE_Listener.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Stack [prog, classDef] indicates that the parser is in rule classDef, which was called
by prog. Notice that the token information contains the character position
within the input stream. This is useful for highlighting errors in the input
like development environments do. For example, token [@2,8:8='T',<9>,1:8]
indicates that it is the third token in the token stream (index 2 from 0), ranges
from characters 8 to 8, has token type 9, resides on line 1, and is at character
position 8 (counting from 0 in treating tabs as one character).

We can just as easily send that message to a dialog box using Java Swing by
altering the syntaxError() method.

errors/TestE_Dialog.java
public static class DialogListener extends BaseErrorListener {

@Override
public void syntaxError(Recognizer<?, ?> recognizer,

Object offendingSymbol,
int line, int charPositionInLine,
String msg,
RecognitionException e)

{
List<String> stack = ((Parser)recognizer).getRuleInvocationStack();
Collections.reverse(stack);
StringBuilder buf = new StringBuilder();
buf.append("rule stack: "+stack+" ");
buf.append("line "+line+":"+charPositionInLine+" at "+

offendingSymbol+": "+msg);

JDialog dialog = new JDialog();
Container contentPane = dialog.getContentPane();
contentPane.add(new JLabel(buf.toString()));
contentPane.setBackground(Color.white);
dialog.setTitle("Syntax error");
dialog.pack();
dialog.setLocationRelativeTo(null);
dialog.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

}
}

Running test rig TestE_Dialog on input class T { int int i; } pops up a dialog box such
as the following:

As another example, let’s build an error listener, TestE_Listener2.java, that prints
out the line with the offending token underlined, as in the following sample
run:

report erratum • discuss

Altering and Redirecting ANTLR Error Messages • 155

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/TestE_Dialog.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ javac TestE_Listener2.java➾
$ java TestE_Listener2➾
class T XYZ {➾

int ;➾
}➾
EOF➾
line 1:8 extraneous input 'XYZ' expecting '{'❮
class T XYZ {

^^^
line 2:6 no viable alternative at input 'int;'

int ;
^

class T

To make things easier, we’ll ignore tabs—charPositionInLine isn’t the column
number because tab size isn’t universally defined. Here’s an error listener
implementation that underlines error locations in the input like we just saw:

errors/TestE_Listener2.java
public static class UnderlineListener extends BaseErrorListener {

public void syntaxError(Recognizer<?, ?> recognizer,
Object offendingSymbol,
int line, int charPositionInLine,
String msg,
RecognitionException e)

{
System.err.println("line "+line+":"+charPositionInLine+" "+msg);
underlineError(recognizer,(Token)offendingSymbol,

line, charPositionInLine);
}

protected void underlineError(Recognizer recognizer,
Token offendingToken, int line,
int charPositionInLine) {

CommonTokenStream tokens =
(CommonTokenStream)recognizer.getInputStream();

String input = tokens.getTokenSource().getInputStream().toString();
String[] lines = input.split("\n");
String errorLine = lines[line - 1];
System.err.println(errorLine);
for (int i=0; i<charPositionInLine; i++) System.err.print(" ");
int start = offendingToken.getStartIndex();
int stop = offendingToken.getStopIndex();
if (start>=0 && stop>=0) {

for (int i=start; i<=stop; i++) System.err.print("^");
}
System.err.println();

}
}

Chapter 9. Error Reporting and Recovery • 156

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/TestE_Listener2.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

There’s one final thing to know about error listeners. When the parser detects
an ambiguous input sequence, it notifies the error listener. The default error
listener, ConsoleErrorListener, however, doesn’t print anything to the console. As
we saw in Section 2.3, You Can't Put Too Much Water into a Nuclear Reactor,
on page 13, ambiguous input likely indicates an error in our grammar; the
parser should not inform our users. Let’s look back at the ambiguous grammar
from that section that can match input f(); in two different ways.

errors/Ambig.g4
grammar Ambig;

stat: expr ';' // expression statement
| ID '(' ')' ';' // function call statement
;

expr: ID '(' ')'
| INT
;

INT : [0-9]+ ;
ID : [a-zA-Z]+ ;
WS : [\t\r\n]+ -> skip ;

If we test the grammar, we don’t see a warning for the ambiguous input.

$ antlr4 Ambig.g4➾
$ javac Ambig*.java➾
$ grun Ambig stat➾
f();➾
EOF➾

To hear about it when the parser detects an ambiguity, tell the parser to use
an instance of DiagnosticErrorListener using addErrorListener().

parser.removeErrorListeners(); // remove ConsoleErrorListener
parser.addErrorListener(new DiagnosticErrorListener());

You should also inform the parser that you’re interested in all ambiguity
warnings, not just those it can detect quickly. In the interest of efficiency,
ANTLR’s decision-making mechanism doesn’t always chase down full ambi-
guity information. Here’s how to make the parser report all ambiguities:

parser.getInterpreter()
.setPredictionMode(PredictionMode.LL_EXACT_AMBIG_DETECTION);

If you’re using TestRig via the grun alias, use option -diagnostics to have it use
DiagnosticErrorListener instead of the default console error listener (and turn on
LL_EXACT_AMBIG_DETECTION).

report erratum • discuss

Altering and Redirecting ANTLR Error Messages • 157

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Ambig.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun Ambig stat -diagnostics➾
f();➾
EOF➾
line 1:3 reportAttemptingFullContext d=0, input='f();'❮
line 1:3 reportAmbiguity d=0: ambigAlts={1, 2}, input='f();'

The output shows that the parser also calls reportAttemptingFullContext(). ANTLR
calls this method when SLL(*) parsing fails and the parser engages the more
powerful full ALL(*) mechanism. See Section 13.7, Maximizing Parser Speed,
on page 243.

It’s a good idea to use the diagnostics error listener during development since
the ANTLR tool can’t warn you about ambiguous grammar constructs stati-
cally (when generating parsers). Only the parser can detect ambiguities in
ANTLR v4. It’s the difference between static typing in Java, say, and the
dynamic typing in Python.

Improvements in ANTLR v4

There are two error-related important improvements in v4: ANTLR does much better
inline error recovery and makes it much easier for programmers to alter the error
handling strategy. When Sun Microsystems was building a parser for JavaFX with
ANTLR v3, it noticed that a single misplaced semicolon could force the parser to stop
looking for a list of, say, class members (via member+). Now, v4 parsers attempt to
resynchronize before and during subrule recognition instead of gobbling tokens and
exiting the current rule. The second improvement lets programmers specify an error
handling mechanism following the Strategy pattern.

Now that we have a good idea about the kinds of messages ANTLR parsers
generate and how to tweak and redirect them, let’s explore error recovery.

9.3 Automatic Error Recovery Strategy

Error recovery is what allows the parser to continue after finding a syntax
error. In principle, the best error recovery would come from the human touch
in a handwritten recursive-descent parser. In my experience, though, it’s
really tough to get good error recovery by hand because it’s so tedious and
easy to screw up. In this latest version of ANTLR, I’ve incorporated every bit
of jujitsu I’ve learned and picked up over the years to provide good error
recovery automatically for ANTLR grammars.

ANTLR’s error recovery mechanism is based upon Niklaus Wirth’s early ideas
in Algorithms + Data Structures = Programs [Wir78] (as well as Rodney Topor’s
A Note on Error Recovery in Recursive Descent Parsers [Top82]) but also includes

Chapter 9. Error Reporting and Recovery • 158

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Josef Grosch’s good ideas from his CoCo parser generator (Efficient and
Comfortable Error Recovery in Recursive Descent Parsers [Gro90]).

Here is how ANTLR uses those ideas together in a nutshell: parsers perform
single-token insertion and single-token deletion upon mismatched token errors
if possible. If not, parsers gobble up tokens until they find a token that could
reasonably follow the current rule and then return, continuing as if nothing
had happened. In this section, we’ll see what those terms mean and explore
how ANTLR recovers from errors in various situations. Let’s begin with the
fundamental recovery strategy that ANTLR uses.

Recovery by Scanning for Following Tokens

When faced with truly borked-up input, the current rule can’t continue, so
the parser recovers by gobbling up tokens until it thinks that it has resynchro-
nized and then returns to the calling rule. We can call this the sync-and-return
strategy. Some people call this “panic mode,” but it works remarkably well.
The parser knows it can’t match the current input with the current rule. It
can throw out tokens only until the lookahead is consistent with something
that should match after the parser exits from the rule. For example, if there
is a syntax error within an assignment statement, it makes a great deal of
sense to throw out tokens until the parser sees a semicolon or other statement
terminator. Drastic, but effective. As we’ll see, ANTLR tries to recover within
the rule before falling back on this basic strategy.

Each ANTLR-generated rule method is wrapped in a try-catch that responds
to syntax errors by reporting the error and attempting to recover before
returning.

try {
...

}
catch (RecognitionException re) {

_errHandler.reportError(this, re);
_errHandler.recover(this, re);

}

We’ll look at the error handling strategy in more detail in Section 9.5, Altering
ANTLR's Error Handling Strategy, on page 171, but, for now, we can summarize
recover() as consuming tokens until it finds one in the resynchronization set.
The resynchronization set is the union of rule reference following sets for all
the rules on the invocation stack. The following set for a rule reference is the
set of tokens that can match immediately following that reference and without
leaving the current rule. So, for example, given alternative assign ';', the following

report erratum • discuss

Automatic Error Recovery Strategy • 159

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

set for rule reference assign is {’;’}. If the alternative were just assign, the following
set would be empty.

It’s worthwhile going through an example to lock in what resynchronization
sets contain. Consider the following grammar, and imagine that, at each rule
invocation, the parser tracks the following set for every rule invocation:

errors/F.g4
grammar F;
group

: '[' expr ']' // Tokens following ref to expr: {']'}
| '(' expr ')' // Tokens following ref to expr: {')'}
;

expr: atom '^' INT ; // Tokens following ref to atom: {'^'}
atom: ID

| INT
;

INT : [0-9]+ ;
ID : [a-zA-Z]+ ;
WS : [\t\r\n]+ -> skip ;

Consider the parse tree on the left for input [1^2] in the following diagram:

Good syntax
[i^2]

Bad syntax
[]

expr]

group

atom

[

^

group

[expr]

atom 2

1

When matching token 1 in rule atom, the call stack is [group, expr, atom] (group
called expr, which called atom). By looking at the call stack, we know precisely
the set of tokens that can follow every rule the parser has called to get us to
the current position. Following sets consider tokens only within the current
rule so that, at runtime, we can combine just the sets associated with the
current call stack. In other words, we can’t get to rule expr from both alterna-
tives of group at the same time.

Combining the following sets pulled from the comments in grammar F, we get
a resynchronization set of {'^', ']'}. To see why this is the set we want, let’s
watch what happens when the parser encounters erroneous input []. We get
the parse tree shown on the right in the earlier side-by-side diagram. In atom,
the parser discovers that the current token,], isn’t consistent with either

Chapter 9. Error Reporting and Recovery • 160

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/F.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

alternative of atom. To resynchronize, the parser consumes tokens until it
finds a token from the resynchronization set. In this case, current token]
starts out as a member of the resynchronization set so the parser doesn’t
actually consume any tokens to resynchronize in atom.

After finishing the recovery process in rule atom, the parser returns to rule
expr but immediately discovers that it doesn’t have the ^ token. The process
repeats itself, and the parser consumes tokens until it finds something in the
resynchronization set for rule expr. The resynchronization set for expr is the
following set for the expr reference in the first alternative of group: { ']' }. Again,
the parser does not consume anything and exits expr, returning to the first
alternative of rule group. Now, the parser finds exactly what it is looking for
following the reference to expr. It successfully matches the ']' in group, and the
parser is now properly resynchronized.

During recovery, ANTLR parsers avoid emitting cascading error messages (an
idea borrowed from Grosch). That is, parsers emit a single error message for
each syntax error until they successfully recover from that error. Through
the use of a simple Boolean variable, set upon syntax error, the parser avoids
emitting further errors until the parser successfully matches a token and
resets the variable. (See field errorRecoveryMode in class DefaultErrorStrategy.)

FOLLOW Sets vs. Following Sets

Those familiar with language theory will wonder whether the resynchronization set
for rule atom is just FOLLOW(atom), the set of all viable tokens that can follow references
to atom in some context. It isn’t that simple, unfortunately, and the resynchronization
sets must be computed dynamically to get the set of tokens that can follow the rule
in a particular context rather than in all contexts. FOLLOW(expr) is { ')', ']' }, which
includes all tokens that can follow references to expr in both contexts (alternatives 1
and 2 of group). Clearly, though, at runtime the parser can call expr from only one
location at a time. Note that FOLLOW(atom) is '^', and if the parser resynchronized to
that token instead of resynchronization set {'^', ']'}, it would consume until the end
of file because there is no '^' on the input stream.

In many cases, ANTLR can recover more intelligently than consuming until
the resynchronization set and returning from the current rule. It pays to
attempt to “repair” the input and continue within the same rule. Over the
next few sections, we’ll look at how the parser recovers from mismatched
tokens and errors within subrules.

report erratum • discuss

Automatic Error Recovery Strategy • 161

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Recovering from Mismatched Tokens

One of the most common operations during parsing is “match token.” For
every token reference, T, in the grammar, the parser invokes match(T). If the
current token isn’t T, match() notifies the error listener(s) and attempts to
resynchronize. To resynchronize, it has three choices. It can delete a token,
it can conjure one up, or it can punt and throw an exception to engage the
basic sync-and-return mechanism.

Deleting the current token is the easiest way to resynchronize, if it makes
sense to do so. Let’s revisit rule classDef from our simple class definition lan-
guage in grammar Simple.

errors/Simple.g4
classDef

: 'class' ID '{' member+ '}' // a class has one or more members
{System.out.println("class "+$ID.text);}

;

Given input class 9 T { int i; }, the parser will delete 9 and keep going within the
rule to match the class body. The following image illustrates the state of the
input after the parser has consumed class:

class 9 T

LA(1) LA(2)

...

The LA(1) and LA(2) labels mark the first token of lookahead (the current token)
and the second token of lookahead. The match(ID) expects LA(1) to be an ID, but
it’s not. However, the next token, LA(2), is in fact an ID. To recover, we just
have to delete the current token (as noise), consume the ID we were expecting,
and exit match().

If the parser can’t resynchronize by deleting a token, it attempts to insert a
token instead. Let’s say we forgot the ID so that classDef sees input class { int i; }.
After matching class, the input state looks like this:

class {

LA(1)

...

The parser invokes match(ID) but instead of an identifier finds {. In this situa-
tion, the parser knows that the { is what it will need next since that is what
follows the ID reference in classDef. To resynchronize, the match() can pretend
to see the identifier and return, thus allowing the next match('{') call to succeed.

Chapter 9. Error Reporting and Recovery • 162

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Simple.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

That works great if we ignore embedded actions, such as the print statement
that references the class name identifier. The print statement references the
missing token via $ID.text and will cause an exception if the token is null.
Rather than simply pretending the token exists, the error handler conjures
one up; see getMissingSymbol() in DefaultErrorStrategy. The conjured token has the
token type that the parser expected and takes line and character position
information from the current input token, LA(1). This conjured token also
prevents exceptions in listeners and visitors that reference the missing token.

The easiest way to see what’s going on is to look at the parse tree, which
shows how the parser recognizes all the tokens. In the case of errors, the
parse tree highlights in red the tokens that the parser deletes or conjures up
during resynchronization. For input class { int i; } and grammar Simple, we get
the following parse tree:

prog

}

classDef

iint

class <missing ID> member

;

{

The parser also executes the embedded print actions without throwing an
exception since error recovery conjures up a valid Token object for $ID.

$ grun Simple prog -gui➾
class { int i; }➾
EOF➾
line 1:6 missing ID at '{'❮
var i
class <missing ID>

Naturally, an identifier with text <missing ID> isn’t really useful for whatever
goal we’re trying to accomplish, but at least error recovery doesn’t induce a
bunch of null pointer exceptions.

Now that we know how ANTLR does in-rule recovery for simple token refer-
ences, let’s explore how it recovers from errors before and during subrule
recognition.

Recovering from Errors in Subrules

Years ago the JavaFX group at Sun contacted me because their ANTLR-gen-
erated parser didn’t recover well in certain cases. It turns out that the parser
was bailing out of subrule loops like member+ at the first whiff of trouble,

report erratum • discuss

Automatic Error Recovery Strategy • 163

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

forcing sync-and-return recovery for the surrounding rule. A small error in
a member declaration like var width Number; (missing a colon after width) would
force the parser to skip all of the remaining members.

Jim Idle, an ANTLR mailing list contributor and consultant, came up with
what I call “Jim Idle’s magic sync” error recovery. His solution was to manu-
ally insert references to an empty rule into the grammar that contained a
special action that triggered error recovery when necessary. ANTLR v4 now
automatically inserts synchronization checks at the start and at the loop
continuation test to avoid such drastic recovery. The mechanism looks like
this:

Subrule start At the start of any subrule, parsers attempt single-token
deletion. But, unlike token matches, parsers don’t attempt single-token
insertion. ANTLR would have a hard time conjuring up a token because
it would have to guess which of several alternatives would ultimately be
successful.

Looping subrule continuation test If the subrule is a looping construct, (...)*
or (...)+, the parser tries to recover aggressively upon error to stay in the
loop. After successfully matching an alternative of the loop, the parser
consumes until it finds a token consistent with one of these sets:

(a) Another iteration of the loop

(b) What follows the loop

(c) The resynchronization set of the current

Let’s look at single-token deletion in front of a subrule first. Consider the
looping member+ construct in rule classDef of grammar Simple. If we stutter and
type an extra {, the member+ subrule will delete the extra token before jumping
into member, as shown in the following parse tree:

classDef

class memberT

prog

}

;int i

{{

The following session confirms proper recovery because it correctly identifies
variable i:

Chapter 9. Error Reporting and Recovery • 164

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun Simple prog➾
class T {{ int i; }➾
EOF➾
line 1:9 extraneous input '{' expecting 'int'❮
var i
class T

Now let’s try some really messed up input and see whether the member+ loop
can recover and continue looking for members.

$ grun Simple prog➾
class T {{➾

int x;➾
y;;;➾
int z;➾

}➾
EOF➾
line 1:9 extraneous input '{' expecting 'int'❮
var x
line 3:2 extraneous input 'y' expecting {'int', '}'}
var z
class T

We know that the parser resynchronized and stayed within the loop because
it identified variable z. The parser gobbles up y;;; until it sees the start of
another member (set (c) earlier) and then loops back to member. If the input
did not include int z;, the parser would have gobbled until it had seen } (set
(b) above) and exited the loop. The parse tree highlights the deleted tokens
and illustrates that the parser still interpreted int z; as a valid member.

T }member;

z

y{ ;

classDef

prog

{ ;

;x

member

int;

class

int

If the user provides rule member with bad syntax and also forgets the closing
} of a class, we wouldn’t want the parser to scan until it finds }. Parser
resynchronization could throw out an entire following class definition looking
for }. Instead, the parser stops gobbling if it sees a token in set (c), as shown
the following session:

report erratum • discuss

Automatic Error Recovery Strategy • 165

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun Simple prog➾
class T {➾

int x;➾
;➾

class U { int y; }➾
EOF➾
var x❮
line 3:2 extraneous input ';' expecting {'int', '}'}
class T
var y
class U

The parser stops resynchronization when it sees keyword class, as we can see
from the parse tree.

int

<missing ’}’>

classDef

int ;

class

x

U

prog

;

T { memberclass

classDef

;member{

y

}

Besides the recognition of tokens and subrules, parsers can also fail to match
semantic predicates.

Catching Failed Semantic Predicates

We’ve gotten only a taste of semantic predicates at this point, but it’s appro-
priate to discuss what happens upon failed predicates in this error handling
chapter. We’ll look at predicates in depth in Chapter 11, Altering the Parse
with Semantic Predicates, on page 189. For now, let’s treat semantic predicates
like assertions. They specify conditions that must be true at runtime for the
parser to get past them. If a predicate evaluates to false, the parser throws a
FailedPredicateException exception, which is caught by the catch of the current rule.
The parser reports an error and does the generic sync-and-return recovery.

Let’s look at an example that uses a semantic predicate to restrict the number
of integers in a vector, very similar to the grammar in Altering the Parse with
Semantic Predicates, on page 48. Rule ints matches up to max integers.

errors/Vec.g4
vec4: '[' ints[4] ']' ;
ints[int max]
locals [int i=1]

: INT (',' {$i++;} {$i<=$max}? INT)*
;

Chapter 9. Error Reporting and Recovery • 166

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Vec.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Given one too many integers, as in the following session, we see an error
message and get error recovery that throws out the extra comma and integers:

$ antlr4 Vec.g4➾
$ javac Vec*.java➾
$ grun Vec vec4➾
[1,2,3,4,5,6]➾
EOF➾
line 1:9 rule ints failed predicate: {$i<=$max}?❮

The parse tree shows that the parser detected the error at the fifth integer.

3

vec4

[

,

ints

42

]

,1 5 6,, ,

The {$i<=$max} error message might be helpful to us as grammar designers,
but it’s certainly not helpful to our users. We can change the message from
a chunk of code to something a little more readable by using the fail option
on the semantic predicate. For example, here is the ints rule again but with
an action that computes a readable string:

errors/VecMsg.g4
ints[int max]
locals [int i=1]

: INT (',' {$i++;} {$i<=$max}?<fail={"exceeded max "+$max}> INT)*
;

Now we get a better message for the same input.

$ antlr4 VecMsg.g4➾
$ javac VecMsg*.java➾
$ grun VecMsg vec4➾
[1,2,3,4,5,6]➾
EOF➾
line 1:9 rule ints exceeded max 4❮

The fail option takes either a string literal in double quotes or an action that
evaluates to a string. The action is handy if you’d like to execute a function
when a predicate fails. Just use an action that calls a function such as
{...}?<fail={failedMaxTest()}>.

A word of caution about using semantic predicates to test for input validity.
In the vector example, the predicate enforces syntactic rules, so it’s OK to
throw an exception and try to recover. If, on the other hand, we have a syn-
tactically valid but semantically invalid construct, it’s not a good idea to use
a semantic predicate.

report erratum • discuss

Automatic Error Recovery Strategy • 167

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/VecMsg.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Imagine that, in some language, we can assign any value to a variable except
0. That means assignment x = 0; is syntactically valid but semantically invalid.
Certainly we have to emit an error to the user, but we should not trigger error
recovery. x = 0; is perfectly legal syntactically. In a sense, the parser will auto-
matically “recover” from the error. Here’s a simple grammar that demonstrates
the issue:

errors/Pred.g4
assign

: ID '=' v=INT {$v.int>0}? ';'
{System.out.println("assign "+$ID.text+" to ");}

;

If the predicate in rule assign throws an exception, the sync-and-return
behavior will throw out the ; after the predicate. This might work out just fine,
but we risk an imperfect resynchronization. A better solution is to emit an
error manually and let the parser continue matching the correct syntax. So,
instead of the predicate, we should use a simple action with a conditional.

{if ($v.int==0) notifyListeners("values must be > 0");}

Now that we’ve looked at all the situations that can trigger error recovery, it’s
worth pointing out a potential flaw in the mechanism. Given that the parser
sometimes doesn’t consume any tokens during a single recovery attempt, it’s
possible that overall recovery could go into an infinite loop. If we recover
without consuming a token and get back to the same location in the parser,
we will recover again without consuming a token. In the next section, we’ll
see how ANTLR avoids this pitfall.

Error Recovery Fail-Safe

ANTLR parsers have a built-in fail-safe to guarantee error recovery terminates.
If we reach the same parser location and have the same input position, the
parser forces a token consumption before attempting recovery. Returning to
the simple Simple grammar from the start of this chapter, let’s look at a sample
input that trips the fail-safe. If we add an extra int token in a field definition,
the parser detects an error and tries to recover. As we’ll see in the next test
run, the parser will call recover() and try to restart parsing multiple times before
correctly resynchronizing (Figure 9, Parser resynchronization, on page 169).

The right parse tree in the diagram in Figure 10, Parse trees for good and bad
syntax, on page 169 shows that there are three invocations of member from
classDef.

Chapter 9. Error Reporting and Recovery • 168

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Pred.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun Simple prog➾
class T {➾

int int x;➾
}➾
EOF➾
line 2:6 no viable alternative at input 'intint'❮
var x
class T

Figure 9—Parser resynchronization

member

;

}

classDef

T

prog

class member member

iint

{

int

}

;

prog

classDef

member

i

{

int

Tclass

Good syntax Bad syntax
class T { int i; } class T { int int i; }

Figure 10—Parse trees for good and bad syntax

The first reference doesn’t match anything, but the second one matches the
extraneous int token. The third attempt at matching a member matches the
proper int x; sequence.

Let’s walk through the exact sequence of events. The parser is in rule member
when it detects the first error.

errors/Simple.g4
member

: 'int' ID ';' // field definition
{System.out.println("var "+$ID.text);}

| 'int' f=ID '(' ID ')' '{' stat '}' // method definition
{System.out.println("method: "+$f.text);}

;

Input int int doesn’t fit either alternative of member, so the parser engages the
sync-and-return error recovery strategy. It emits the first error message and
consumes until it sees a token in the resynchronization set for call stack [prog,
classDef, member].

Because of the classDef+ and member+ loops in the grammar, computing the
resynchronization set is a little complicated. Following the call to member, the
parser could loop back and find another member or exit the loop and find

report erratum • discuss

Automatic Error Recovery Strategy • 169

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Simple.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

the '}' that closes the class definition. Following the call to classDef, the parser
could loop back to see the start of another class or simply exit prog. So, for
call stack [prog, classDef, member], the resynchronization set is {'int', '}', 'class'}.

At this point, the parser recovers without consuming a token because the
current input token, int, is in the resynchronization set. It simply returns to
the caller: the member+ loop in classDef. The loop then tries to match another
member. Unfortunately, since it has not consumed any tokens, the parser
detects another error when it returns to member (though it hushes the spurious
error message, by virtue of the errorRecovery flag).

During recovery for this second error, the parser trips the fail-safe because
it has arrived at the same parser location and input position. The fail-safe
forces a token consumption before attempting resynchronization. Since int is
in the resynchronization set, it doesn’t consume a second token. Fortunately,
that’s exactly what we want because the parser is now properly resynchro-
nized. The next three tokens represent a valid member definition: int x;. The
parser returns once again from member to the loop in classDef. For the third
time, we go back to member, but now parsing will succeed.

So, that’s the story with ANTLR’s automatic error recovery mechanism. Now
let’s look at a manual mechanism that can sometimes provide better error
recovery.

9.4 Error Alternatives

Some syntax errors are so common that it’s worth treating them specially.
For example, programmers often have the wrong number of parentheses at
the end of a function call with nested arguments. To handle these cases
specially, all we have to do is add alternatives to match the erroneous but
common syntax. The following grammar recognizes function calls with a single
argument, possibly with nested parentheses in the argument. Rule fcall has
two so-called error alternatives.

errors/Call.g4
stat: fcall ';' ;
fcall

: ID '(' expr ')'
| ID '(' expr ')' ')' {notifyErrorListeners("Too many parentheses");}
| ID '(' expr {notifyErrorListeners("Missing closing ')'");}
;

expr: '(' expr ')'
| INT
;

Chapter 9. Error Reporting and Recovery • 170

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/Call.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

While these error alternatives can make an ANTLR-generated parser work a
little harder to choose between alternatives, they don’t in any way confuse
the parser. Just like any other alternative, the parser matches them if they
are consistent with the current input. For example, let’s try some input
sequences that match the error alternatives, starting with a valid function
call.

$ antlr4 Call.g4➾
$ javac Call*.java➾
$ grun Call stat➾
f(34);➾
EOF➾
$ grun Call stat➾
f((34);➾
EOF➾
line 1:6 Missing closing ')'❮
$ grun Call stat➾
f((34)));➾
EOF➾
line 1:8 Too many parentheses❮

At this point, we’ve learned quite a bit about the error messages that ANTLR
parsers can generate and also how parsers recover from errors in lots of dif-
ferent situations. We’ve also seen how to customize error messages and
redirect them to different error listeners. All of this functionality is controlled
and encapsulated in an object that specifies ANTLR’s error handling strategy.
In the next section, we’ll look at that strategy in detail to learn more about
customizing how parsers respond to errors.

9.5 Altering ANTLR’s Error Handling Strategy

The default error handling mechanism works very well, but there are a few
atypical situations in which we might want to alter it. First, we might want
to disable some of the in-line error handling because of its runtime overhead.
Second, we might want to bail out of the parser upon the first syntax error.
For example, when parsing a command line for a shell like bash, there’s no
point in trying to recover from errors. We can’t risk executing that command
anyway, so the parser can bail out at the first sign of trouble.

To explore the error handling strategy, take a look at interface ANTLRErrorStrategy
and its concrete implementation class DefaultErrorStrategy. That class holds
everything associated with the default error handling behavior. ANTLR parsers
signal that object to report errors and recover. For example, here’s the catch
block inside of each ANTLR-generated rule function:

report erratum • discuss

Altering ANTLR’s Error Handling Strategy • 171

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

_errHandler.reportError(this, re);
_errHandler.recover(this, re);

_errHandler is a variable holding a reference to an instance of DefaultErrorStrategy.
Methods reportError() and recover() embody the error reporting and sync-and-
return functionality. reportError() delegates error reporting to one of three
methods, according to the type of exception thrown.

Turning to our first atypical situation, let’s decrease the runtime burden that
error handling places on the parser. Take a look at this code that ANTLR
generates for the member+ subrule in grammar Simple:

_errHandler.sync(this);
_la = _input.LA(1);
do {

setState(22); member();
setState(26);
_errHandler.sync(this);
_la = _input.LA(1);

} while (_la==6);

For applications where it’s safe to assume the input is syntactically correct,
such as network protocols, we might as well avoid the overhead of detecting
and recovering from errors in subrules. We can do that by subclassing
DefaultErrorStrategy and overriding sync() with an empty method. The Java com-
piler would likely then inline and eliminate the _errHandler.sync(this) calls. We’ll
see how to notify the parser to use a different error strategy through the next
example.

The other atypical situation is bailing out of the parser upon the first syntax
error. To make this work, we have to override three key recovery methods, as
shown in the following code:

errors/BailErrorStrategy.java
import org.antlr.v4.runtime.*;

public class BailErrorStrategy extends DefaultErrorStrategy {
/** Instead of recovering from exception e, rethrow it wrapped
* in a generic RuntimeException so it is not caught by the
* rule function catches. Exception e is the "cause" of the
* RuntimeException.
*/

@Override
public void recover(Parser recognizer, RecognitionException e) {

throw new RuntimeException(e);
}

Chapter 9. Error Reporting and Recovery • 172

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/BailErrorStrategy.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

/** Make sure we don't attempt to recover inline; if the parser
* successfully recovers, it won't throw an exception.
*/

@Override
public Token recoverInline(Parser recognizer)

throws RecognitionException
{

throw new RuntimeException(new InputMismatchException(recognizer));
}

/** Make sure we don't attempt to recover from problems in subrules. */
@Override
public void sync(Parser recognizer) { }

}

For a test rig, we can reuse our typical boilerplate code. In addition to creating
and launching the parser, we need to create a new BailErrorStrategy instance
and tell the parser to use it instead of the default strategy.

errors/TestBail.java
parser.setErrorHandler(new BailErrorStrategy());

While we’re at it, we should also bail out at the first lexical error. To do that,
we have to override method recover() in Lexer.

errors/TestBail.java
public static class BailSimpleLexer extends SimpleLexer {

public BailSimpleLexer(CharStream input) { super(input); }
public void recover(LexerNoViableAltException e) {

throw new RuntimeException(e); // Bail out
}

}

Let’s try a lexical error first by inserting a wacky # character at the beginning
of the input. The lexer throws an exception that blasts control flow all the
way out to the main program.

$ antlr4 Simple.g4➾
$ javac Simple*.java TestBail.java➾
$ java TestBail➾
class T { int i; }➾
EOF➾
line 1:1 token recognition error at: '#'❮
Exception in thread "main"
java.lang.RuntimeException: LexerNoViableAltException('#')
at TestBail$BailSimpleLexer.recover(TestBail.java:9)
at org.antlr.v4.runtime.Lexer.nextToken(Lexer.java:165)
at org.antlr.v4.runtime.BufferedTokenStream.fetch(BufferedT...Stream.java:139)
at org.antlr.v4.runtime.BufferedTokenStream.sync(BufferedT...Stream.java:133)
at org.antlr.v4.runtime.CommonTokenStream.setup(CommonTokenStream.java:129)
at org.antlr.v4.runtime.CommonTokenStream.LT(CommonTokenStream.java:111)

report erratum • discuss

Altering ANTLR’s Error Handling Strategy • 173

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/TestBail.java
http://media.pragprog.com/titles/tpantlr2/code/errors/TestBail.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

at org.antlr.v4.runtime.Parser.enterRule(Parser.java:424)
at SimpleParser.prog(SimpleParser.java:68)
at TestBail.main(TestBail.java:23)
...

The parser also bails out at the first syntax error (a missing class name, in
this case).

$ java TestBail➾
class { }➾
EOF➾
Exception in thread "main" java.lang.RuntimeException:❮

org.antlr.v4.runtime.InputMismatchException
...

To demonstrate the flexibility of the ANTLRErrorStrategy interface, let’s finish up
by altering how the parser reports errors. To alter the standard message, “no
viable alternative at input X,” we can override reportNoViableAlternative() and
change the message to something different.

errors/MyErrorStrategy.java
import org.antlr.v4.runtime.*;
public class MyErrorStrategy extends DefaultErrorStrategy {

@Override
public void reportNoViableAlternative(Parser parser,

NoViableAltException e)
throws RecognitionException

{
// ANTLR generates Parser subclasses from grammars and
// Parser extends Recognizer. Parameter parser is a
// pointer to the parser that detected the error
String msg = "can't choose between alternatives"; // nonstandard msg
parser.notifyErrorListeners(e.getOffendingToken(), msg, e);

}
}

Remember, though, that if all we want to do is change where error messages
go, we can specify an ANTLRErrorListener as we did in Section 9.2, Altering and
Redirecting ANTLR Error Messages, on page 153. To learn how to completely
override how ANTLR generates code for catching exceptions, see Catching
Exceptions, on page 266.

We’ve covered all of the important error reporting and recovery facilities
within ANTLR. Because of ANTLRErrorListener and ANTLRErrorStategy interfaces, we
have great flexibility over where error messages go, what those messages are,
and how the parser recovers from errors.

In the next chapter, we’re going to learn how to embed code snippets called
actions directly within the grammar.

Chapter 9. Error Reporting and Recovery • 174

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/errors/MyErrorStrategy.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 10

Attributes and Actions
So far, we’ve isolated our application-specific code to parse-tree walkers,
which means that our code has always executed after parsing is complete.
As we’ll see in the next few chapters, some language applications require
executing application-specific code while parsing. To do that, we need the
ability to inject code snippets, called actions, directly into the code ANTLR
generates. Our first goal, then, is to learn how to embed actions in parsers
and lexers and to figure out what we can put in those actions.

Keep in mind that, in general, it’s a good idea to avoid entangling grammars
and application-specific code. Grammars without actions are easier to read,
aren’t tied to a particular target language, and aren’t tied to a specific appli-
cation. Still, embedded actions can be useful for three reasons.

• Simplicity: Sometimes it’s easier just to stick in a few actions and avoid
creating a tree listener or visitor.

• Efficiency: In resource-critical applications, we might not want to waste
the time or memory needed to build a parse tree.

• Predicated parsing: In rare cases, we can’t parse properly without refer-
encing data collected previously in the input stream. Some grammars
need to build up a symbol table and then recognize future input differently,
depending on whether an identifier is, say, a type or a method. We’ll
explore this in Chapter 11, Altering the Parse with Semantic Predicates,
on page 189.

Actions are arbitrary chunks of code written in the target language (the lan-
guage in which ANTLR generates code) enclosed in {...}. We can do whatever
we want in these actions as long as they are valid target language statements.
Typically, actions operate on the attributes of tokens and rule references. For
example, we can ask for the text of a token or the text matched by an entire

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

rule invocation. Using data derived from token and rule references, we can
print things out and perform arbitrary computations. Rules also allow
parameters and return values so we can pass data around between rules.

We’re going to learn about grammar actions by exploring three examples.
First, we’re going to build a calculator with the same functionality as that in
Section 7.4, Labeling Rule Alternatives for Precise Event Methods, on page 117.
Second, we’ll add some actions to the CSV grammar (from Section 6.1, Parsing
Comma-Separated Values, on page 84) to explore rule and token attributes.
In the third example, we’ll learn about actions in lexer rules by building a
grammar for a language whose keywords aren’t known until runtime.

It’s time to get our hands dirty, starting with an action-based calculator
implementation.

10.1 Building a Calculator with Grammar Actions

Let’s revisit the expression grammar from Section 4.2, Building a Calculator
Using a Visitor, on page 38 to learn about actions. In that section, we built a
calculator using a tree visitor that evaluated expressions such as the following:

actions/t.expr
x = 1
x
x+2*3

Our goal here is to reproduce that same functionality, but without using a
visitor and without even building a parse tree. Moreover, we’ll employ a little
trick to make it interactive, meaning we get results when we hit Return , not
at the end of the input. Our examples so far have scarfed up the entire input
and then processed the resulting parse trees.

As we go through this section, we’re going to learn how to put generated
parsers into packages, define parser fields and methods, insert actions within
rule alternatives, label grammar elements for use within actions, and define
rule return values.

Using Actions Outside of Grammar Rules

Outside of grammar rules, there are two kinds of things we want to inject
into generated parsers and lexers: package/import statements and class
members like fields and methods.

Here is an idealized code generation template that illustrates where we want
to inject code snippets for, say, the parser:

Chapter 10. Attributes and Actions • 176

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/t.expr
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

<header>
public class <grammarName>Parser extends Parser {

<members>
...

}

To specify a header action, we use @header {...} in our grammar. To inject fields
or methods into the generated code, we use @members {...}. In a combined
parser/lexer grammar, these named actions apply to both the parser and the
lexer. (ANTLR option -package lets us set the package without a header action.)
To restrict an action to the generated parser or lexer, we use @parser::name or
@lexer::name .

Let’s see what these look like for our calculator. The expression grammar
starts with a grammar declaration like before, but now we’re going to declare
that the generated code lives in a Java package. We’ll also need to import
some standard Java utility classes.

actions/tools/Expr.g4
grammar Expr;

@header {
package tools;
import java.util.*;
}

The previous calculator’s EvalVisitor class had a memory field that stored name-
value pairs to implement variable assignments and references. We’ll put that
in our members action. To reduce clutter in the grammar, let’s also define a
convenience method called eval() that performs an operation on two operands.
Here’s what the complete members action looks like:

actions/tools/Expr.g4
@parser::members {

/** "memory" for our calculator; variable/value pairs go here */
Map<String, Integer> memory = new HashMap<String, Integer>();

int eval(int left, int op, int right) {
switch (op) {

case MUL : return left * right;
case DIV : return left / right;
case ADD : return left + right;
case SUB : return left - right;

}
return 0;

}
}

report erratum • discuss

Building a Calculator with Grammar Actions • 177

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Expr.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Expr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

With that infrastructure in place, let’s see how to use these parser class
members inside actions among the rule elements.

Embedding Actions Within Rules

In this section, we’re going to learn how to embed actions in the grammar in
order to generate some output, update data structures, and set rule return
values. We’ll also look at how ANTLR wraps up rule parameters, return values,
and other attributes of a rule invocation into instances of ParserRuleContext
subclasses.

The Basics

Rule stat recognizes expressions, variable assignments, and blank lines.
Because we do nothing upon a blank line, stat needs only two actions.

actions/tools/Expr.g4
stat: e NEWLINE {System.out.println($e.v);}

| ID '=' e NEWLINE {memory.put($ID.text, $e.v);}
| NEWLINE
;

Actions execute after the preceding grammar element and before the next
one. In this case, the actions appear at the end of the alternatives, so they
execute after the parser matches the entire statement. When stat sees an
expression followed by NEWLINE, it should print the value of the expression.
When stat sees a variable assignment, it should store the name-value pair in
field memory.

The only unfamiliar syntax in those actions are $e.v and $ID.text. In general,
$x .y refers to attribute y of element x , where x is either a token reference or
a rule reference. Here, $e.v refers to the return value from calling rule e. (We’ll
see why it’s called v in a second.) $ID.text refers to the text matched by the ID
reference.

If ANTLR doesn’t recognize the y component, it doesn’t translate it. In this
case, text is a known attribute of a token, and ANTLR translates it to getText().
We could also use $ID.getText() to get the same thing. For a complete list of the
attributes for rules and tokens, see Section 15.4, Actions and Attributes, on
page 271.

Turning to rule e now, let’s see what it looks like with embedded actions. The
basic idea is to mimic the EvalVisitor functionality by inserting code snippets
directly into the grammar as actions.

Chapter 10. Attributes and Actions • 178

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Expr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

actions/tools/Expr.g4
e returns [int v]

: a=e op=('*'|'/') b=e {$v = eval($a.v, $op.type, $b.v);}
| a=e op=('+'|'-') b=e {$v = eval($a.v, $op.type, $b.v);}
| INT {$v = $INT.int;}
| ID
{
String id = $ID.text;
$v = memory.containsKey(id) ? memory.get(id) : 0;
}

| '(' e ')' {$v = $e.v;}
;

A number of interesting things are going on in this example. The first thing
we see is the return value specification for an integer, v. That’s why stat’s
actions refer to $e.v. ANTLR return values differ from Java return values in
that we get to name them and we can have more than one.

Next, we see labels on e rule references and on the operator subrules such
as op=('*'|'/'). Labels refer to Token or ParserRuleContext objects derived from
matching a token or invoking a rule.

Before turning to the action contents, it’s worth looking at where ANTLR stores
things like return values and labels. It’ll make following the ANTLR-generated
code easier when source-level debugging.

One Rule Context Object to Bind Them All

In Section 2.4, Building Language Applications Using Parse Trees, on page 16, we
learned that ANTLR implements parse-tree nodes with rule context objects. Each
rule invocation creates and returns a rule context object, which holds all of the
important information about the recognition of a rule at a specific location in the
input stream. For example, rule e creates and returns EContext objects.

public final EContext e(...) throws RecognitionException {...}

Naturally, a rule context object is a very handy place to put rule-specific
entities. The first part of EContext looks like this:

public static class EContext extends ParserRuleContext {
public int v; // rule e return value from "returns [int v]"
public EContext a; // label a on (recursive) rule reference to e
public Token op; // label on operator sub rules like ('*'|'/')
public EContext b; // label b on (recursive) rule reference to e
public Token INT; // reference to INT matched by 3rd alternative
public Token ID; // reference to ID matched by 4th alternative
public EContext e; // reference to context object from e invocation
...

}

report erratum • discuss

Building a Calculator with Grammar Actions • 179

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Expr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Labels always become fields in the rule context object, but ANTLR doesn’t
always generate fields for alternative elements such as ID, INT, and e. ANTLR
generates fields for them only if they’re referenced by actions in the grammar
(as e’s actions do). ANTLR tries to reduce the number of context object fields.

Now we have all the pieces in place, so let’s analyze the contents of the actions
among the alternatives of rule e.

Computing Return Values

All of the actions in e set the return value with assignment $v = ...;. This sets
the return value but does not perform a return from the rule function. (Don’t
use a return statement in your actions because it will make the parser go
insane.) Here is the action used by the first two alternatives:

$v = eval($a.v, $op.type, $b.v);

This action computes the value of the subexpression and sets the return
value for e. The arguments to eval() are the return values from the two refer-
ences to e, $a.v and $b.v, and the token type of the operator matched by the
alternative, $op.type. $op.type will always be the token type for one of the arith-
metic operators. Notice that we can reuse labels (as long as they refer to the
same kind of thing). The second alternative reuses labels a, b, and op.

The third alternative’s action uses $INT.int to access the integer value of the
text matched by the INT token. This is just shorthand for Integer.valueOf($INT.text).
The embedded action is much simpler than the equivalent visitor visitInt()
method (but at the cost of entangling application-specific code with the
grammar).

tour/EvalVisitor.java
/** INT */
@Override
public Integer visitInt(LabeledExprParser.IntContext ctx) {

return Integer.valueOf(ctx.INT().getText());
}

The fourth alternative recognizes a variable reference and sets e’s return value
to the value stored in memory, if we’ve stored a value for that name. This action
uses the Java ?: operator, but we could’ve just as easily used an if-then-else
Java statement. We can put anything into an action that would work as a
body of a Java method.

Finally, the $v = $e.v; action in the last alternative sets the return value to the
result of the expression matched in parentheses. We’re just passing the return
value through. The value of (3) is 3.

Chapter 10. Attributes and Actions • 180

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/EvalVisitor.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

That’s it for the grammar and action code. Now, let’s figure out how to build
an interactive driver for our calculator.

Building an Interactive Calculator

Before exploring the details of building an interactive tool, let’s give it a whirl
by building and testing the grammar and Calc.java test rig. Because we put
statement package tools; in the header action, we need to put the generated Java
code in a directory called tools. (This reflects the standard Java relationship
between package and directory structure.) That means we need to either run
ANTLR from tools or run it from the directory above tools with path tools/Expr.g4
instead of just Expr.g4.

$ antlr4 -no-listener tools/Expr.g4 # gen parser w/o listener into tools
$ javac -d . tools/*.java # compile, put .class files in tools

To try it, we run Calc using its fully qualified name.

$ java tools.Calc➾
x = 1➾
x➾
1❮
x+2*3➾
7❮
EOF➾

You’ll notice that the calculator immediately responds with an answer when
you hit Return. Because ANTLR reads the entire input (usually into a big buffer)
by default, we have to pass input line by line to the parser to make it interac-
tive. Each line represents a complete expression. (If you need to handle
expressions that can span multiple lines, see Fun with Python Newlines, on
page 214.) In the main() method, here’s how we get the first expression:

actions/tools/Calc.java
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String expr = br.readLine(); // get first expression
int line = 1; // track input expr line numbers

To maintain memory field values across expressions, we need a single shared
parser for all input lines.

actions/tools/Calc.java
ExprParser parser = new ExprParser(null); // share single parser instance
parser.setBuildParseTree(false); // don't need trees

As we read in a line, we’ll create a new token stream and pass it to the shared
parser.

report erratum • discuss

Building a Calculator with Grammar Actions • 181

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Calc.java
http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Calc.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

actions/tools/Calc.java
while (expr!=null) { // while we have more expressions

// create new lexer and token stream for each line (expression)
ANTLRInputStream input = new ANTLRInputStream(expr+"\n");
ExprLexer lexer = new ExprLexer(input);
lexer.setLine(line); // notify lexer of input position
lexer.setCharPositionInLine(0);
CommonTokenStream tokens = new CommonTokenStream(lexer);
parser.setInputStream(tokens); // notify parser of new token stream
parser.stat(); // start the parser
expr = br.readLine(); // see if there's another line
line++;

}

So, now we know how to build an interactive tool, and we have a pretty good idea
about how to place and use embedded actions. Our calculator used a header action
to specify a package and a members action to define two parser class members. We
used actions within the rules to compute and return subexpression values as a
function of token and rule attributes. In the next section, we’re going to see some
more attributes and identify a few more action locations.

10.2 Accessing Token and Rule Attributes

Let’s use the CSV grammar from Section 6.1, Parsing Comma-Separated Values,
on page 84 as a foundation for exploring some more action-related features. We’re
going to build an application that creates a map from column name to field for
each row and prints out information gained from parsing the data. Our goal here
is really just to learn more about rule-related actions and attributes.

First, let’s take a look at how to define local variables using the locals section.
As with parameters and return values, the declarations in a locals section
become fields in the rule context object. Because we get a new rule context
object for every rule invocation, we get a new copy of the locals as we’d expect.
The following augmented version of rule file does a number of interesting
things, but let’s start by focusing on what it does with locals.

actions/CSV.g4
/** Derived from rule "file : hdr row+ ;" */
file
locals [int i=0]

: hdr (rows+=row[$hdr.text.split(",")] {$i++;})+
{
System.out.println($i+" rows");
for (RowContext r : $rows) {

System.out.println("row token interval: "+r.getSourceInterval());
}
}

;

Chapter 10. Attributes and Actions • 182

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/tools/Calc.java
http://media.pragprog.com/titles/tpantlr2/code/actions/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Rule file defines a local variable, i, and uses it to count how many rows there
are in the input using action $i++;. To reference local variables, don’t forget
the $ character prefix, or the compiler will complain about undefined variables.
ANTLR translates $i to _localctx.i; there is no i local variable in the rule function
generated for file.

Next, let’s take a look at the call to rule row. Rule invocation row[$hdr.text.split(",")]
illustrates that we use square brackets instead of parentheses to pass
parameters to rules (ANTLR uses parentheses for subrule syntax). Argument
expression $hdr.text.split(",") splits the text matched by the hdr rule invocation
to get an array of strings needed by row.

Let’s break that apart. $hdr is a reference to the sole hdr invocation and evalu-
ates to its HdrContext object. We don’t need to label the hdr reference in this
case (like h=hdr) because $hdr is unique. $hdr.text, then, is the text matched for
the header row. We split the comma-separated header columns using the
standard Java String.split() method, which returns an array of strings. We’ll see
shortly that rule row takes an array-of-string parameter.

The call to row also introduces a new kind of label that uses += instead of the
= label operator. Rather than tracking a single value, label rows is a list of all
RowContext objects returned from all row invocations. After printing out the
number of rows, the final action in file has a loop that iterates through the
RowContext objects. Each time through the loop, it prints out the range of token
indexes matched by the row invocation (using getSourceInterval()).

That loop uses r, not $r, because r is a local variable created within a Java
action. ANTLR can see only those local variables defined with the locals keyword,
not in arbitrary user-defined embedded actions. The difference is that the
parse tree node for rule file would define field i but not r.

Turning to rule hdr now, let’s just print out the header row. We could do that
by referencing $row.text, which is the text matched by the row rule reference.
Alternatively, we can ask for the text of the surrounding rule with $text.

actions/CSV.g4
hdr : row[null] {System.out.println("header: '"+$text.trim()+"'");} ;

In this case, it will also be the text matched by row because that is all there
is in that rule.

Now let’s figure out how to convert every row of data into a map from column
name to value with actions in rule row. To begin with, row takes the array of
column names as a parameter and returns the map. Next, to move through
the column names array, we’ll need a local variable, col. Before parsing the

report erratum • discuss

Accessing Token and Rule Attributes • 183

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

row, we need to initialize the return value map, and, for fun, let’s print out
the map after row finishes. All of that goes into the header for the rule.

actions/CSV.g4
/** Derived from rule "row : field (',' field)* '\r'? '\n' ;" */
row[String[] columns] returns [Map<String,String> values]
locals [int col=0]
@init {

$values = new HashMap<String,String>();
}
@after {

if ($values!=null && $values.size()>0) {
System.out.println("values = "+$values);

}
}

The init action happens before anything is matched in the rule, regardless of
how many alternatives there are. Similarly, the after action happens after the
rule matches one of the alternatives. In this case, we could express the after
action functionality by putting the print statement in an action at the end of
row’s outer alternative.

With everything set up, we can collect the data and fill the map.

actions/CSV.g4
// rule row cont'd...

: field
{
if ($columns!=null) {

$values.put($columns[$col++].trim(), $field.text.trim());
}
}
(',' field

{
if ($columns!=null) {

$values.put($columns[$col++].trim(), $field.text.trim());
}
}

)* '\r'? '\n'
;

The meaty parts of the actions store the field value at the column name in
the values map using $values.put(...). The first parameter gets the column name,
increments the column count, and trims away the whitespace from the name:
$columns[$col++].trim(). The second parameter trims the text of the most recently
matched field: $field.text.trim(). (Both actions in row are identical, so it might be
a good idea to factor that out into a method in a members action.)

Chapter 10. Attributes and Actions • 184

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/CSV.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Everything else in CSV.g4 is familiar to us, so let’s move on to building this
thing and giving it a try. We don’t need to write a special test rig because of
grun, so we can just generate the parser and compile it.

$ antlr4 -no-listener CSV.g4 # again, we won't use a listener
$ javac CSV*.java

Here’s some CSV data we can use:

actions/users.csv
User, Name, Dept
parrt, Terence, 101
tombu, Tom, 020
bke, Kevin, 008

And, here is the output:

$ grun CSV file users.csv
header: 'User, Name, Dept'
values = {Name=Terence, User=parrt, Dept=101}
values = {Name=Tom, User=tombu, Dept=020}
values = {Name=Kevin, User=bke, Dept=008}
3 rows
row token interval: 6..11
row token interval: 12..17
row token interval: 18..23

Rule hdr prints out the first line of output, and the three calls to row print out
the values = ... lines. Back in rule file, the action prints out the number of rows
and the token intervals associated with each row of data.

At this point, we have a very good handle on the use of embedded actions,
both inside and outside of rules. We also know quite a bit about rule
attributes. On the other hand, both the calculator and CSV example use
actions exclusively in the parser rules. It turns out actions can be very useful
in lexer rules as well. We’ll explore that next by seeing how to handle a large
or dynamic set of keywords.

10.3 Recognizing Languages Whose Keywords Aren’t Fixed

To explore actions embedded in lexer rules, let’s build a grammar for a con-
trived programming language whose keywords can change dynamically (from
run to run). This is not as unusual as it sounds. For example, in version 5,
Java added the keyword enum, so the same compiler must be able to enable
and disable a keyword depending on the -version option.

Perhaps a more common use would be dealing with languages that have huge
keyword sets. Rather than making the lexer match all of the keywords individually
(as separate rules), we can make a catchall ID rule and then look up the identifier

report erratum • discuss

Recognizing Languages Whose Keywords Aren’t Fixed • 185

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/users.csv
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

in a keywords table. If the lexer finds a keyword, we can specifically set the token
type from a generic ID to the token type for that keyword.

Before we get to the ID rule and the keyword lookup mechanism, let’s take a
look at a statement rule that references keywords.

actions/Keywords.g4
stat: BEGIN stat* END

| IF expr THEN stat
| WHILE expr stat
| ID '=' expr ';'

;

expr: INT | CHAR ;

ANTLR will implicitly define token types for the keywords BEGIN, END, and so
on. But, ANTLR will warn us that there is no corresponding lexical definition
for these token types.

$ antlr4 Keywords.g4
warning(125): Keywords.g4:31:8: implicit definition of token BEGIN in parser
...

To hush this warning, let’s be explicit.

actions/Keywords.g4
// explicitly define keyword token types to avoid implicit def warnings
tokens { BEGIN, END, IF, THEN, WHILE }

In the generated KeywordsParser, ANTLR defines token types like this:

public static final int ID=3, BEGIN=4, END=5, IF=6, ... ;

Now that we’ve defined our token types, let’s look at the grammar declaration
and a header action, which imports Map and HashMap.

actions/Keywords.g4
grammar Keywords;
@lexer::header { // place this header action only in lexer, not the parser
import java.util.*;
}

We’ll use a Map from keyword name to integer token type for the keywords
table, and we can define the mappings inline using a Java instance initializer
(the inner set of curly braces).

actions/Keywords.g4
@lexer::members { // place this class member only in lexer
Map<String,Integer> keywords = new HashMap<String,Integer>() {{

put("begin", KeywordsParser.BEGIN);
put("end", KeywordsParser.END);
put("if", KeywordsParser.IF);

Chapter 10. Attributes and Actions • 186

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

put("then", KeywordsParser.THEN);
put("while", KeywordsParser.WHILE);

}};
}

With all of our infrastructure in place, let’s match identifiers as we’ve done
many times before, but with an action that flips the token type appropriately.

actions/Keywords.g4
ID : [a-zA-Z]+

{
if (keywords.containsKey(getText())) {

setType(keywords.get(getText())); // reset token type
}
}

;

Here we use Lexer’s getText() method to get the text of the current token. We
use it to see whether the identifier exists within keywords. If it does, then we
reset the token type from ID to the keyword’s token type value.

While we’re having fun in the lexer, let’s figure out how to change the text of
a token. This is useful for stripping single and double quotes from character
and string literals. Usually, a language application would want just the text
inside the quotes. Here’s how to override the text of a token using setText():

actions/Keywords.g4
/** Convert 3-char 'x' input sequence to string x */
CHAR: '\'' . '\'' {setText(String.valueOf(getText().charAt(1)));} ;

If we wanted to get really crazy, we could even specify the Token object to return
from the lexer using setToken(). This is a way to return custom token implemen-
tations. Another way is to override Lexer’s emit() method.

We’re ready to try our little language. The behavior we expect is to have key-
words differentiated from regular identifiers. In other words, x = 34; should
work, but if = 34; should not because if is a keyword. Let’s run ANTLR, compile
the generated code, and try it on the valid assignment.

$ antlr4 -no-listener Keywords.g4➾
$ javac Keywords*.java➾
$ grun Keywords stat➾
x = 34;➾
EOF➾

No problem; there are no errors. However, the parser gives a syntax error for
the assignment that tries to use if as an identifier. It also accepts a valid if
statement without error.

report erratum • discuss

Recognizing Languages Whose Keywords Aren’t Fixed • 187

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://media.pragprog.com/titles/tpantlr2/code/actions/Keywords.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ grun Keywords stat➾
if = 34;➾
EOF➾
line 1:3 extraneous input '=' expecting {CHAR, INT}❮
line 2:0 mismatched input '<EOF>' expecting THEN
$ grun Keywords stat➾
if 1 then i = 4;➾
EOF➾

If you are unlucky enough to be building a parser for a language that, in some
contexts, allows keywords as identifiers, see Treating Keywords As Identifiers,
on page 209.

Actions are less commonly needed in the lexer than the parser, but they are
still useful in situations like this where we need to alter token types or the
token text. We could also alter tokens by looking at the token stream after
the fact instead of with actions while tokenizing the input.

In this chapter, we learned how to embed application code within grammars
using actions among the rule elements and outside rules using named actions
such as header and members. We also saw how to define and reference rule
parameters and return values. Along the way, we also used token attributes
such as text and type. Taken together, these action-related features let us
customize the code ANTLR generates.

Again, try to avoid grammar actions when you can because actions tie a
grammar to a particular programming language target. Actions also tie a
grammar to a specific application. That said, you might not care about these
issues because your company always programs in a single language and your
grammar is specific to a particular application anyway. In that situation, it
could make sense to embed actions directly in the grammar for simplicity or
efficiency reasons (no parse tree construction). Most importantly, some
parsing problems require runtime tests to recognize the input properly. In
the next chapter, we’re going to explore arbitrary Boolean expressions called
semantic predicates that can dynamically turn alternatives on and off.

Chapter 10. Attributes and Actions • 188

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 11

Altering the Parse with Semantic Predicates
In the previous chapter, we learned how to embed actions within a grammar
in order to execute application-specific code on-the-fly during the parse. Those
actions did not affect the operation of the parser in any way, much as log
statements do not affect the surrounding program. Our embedded actions
just computed values or printed things out. In rare cases, however, altering
the parse with embedded code is the only way to reasonably recognize the
input sentences of a language.

In this chapter, we’re going to learn about special actions, {...}?, called
semantic predicates that let us selectively deactivate portions of a grammar
at runtime. Predicates are Boolean expressions that have the effect of reducing
the number of choices that the parser sees. Believe it or not, selectively
reducing choice actually increases the power of the parser!

There are two common use cases for semantic predicates. First, we might
need a parser to handle multiple, slightly different versions (dialects) of the
same language. For example, the syntax of a database vendor’s SQL evolves
over time. To build a database front end for that vendor, we’d need to support
different versions of the same SQL. Similarly, the Gnu C compiler, gcc, has
to deal with ANSI C as well as its own dialect that adds things like the awe-
some computed goto. Moreover, semantic predicates let us choose between
dialects at runtime with a command-line switch or other dynamic mechanism.

The second use case involves resolving grammar ambiguities (discussed in
Section 2.2, Implementing Parsers, on page 11). In some languages, the same
syntactic construct can mean different things, and predicates give us a way
to choose between multiple interpretations of the same input phrase. For
example, in good ol’ Fortran, f(i) could be an array reference or a function call,
depending on what f was defined to be—the syntax was the same. A compiler
had to look up the identifier in a symbol table to properly interpret the input.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Semantic predicates give us a way to turn off improper interpretations based
upon what we find in a symbol table. This leaves the parser with only a single
choice, the proper interpretation.

We’re going to learn about semantic predicates by working through examples
taken from Java and C++. Along the way, we’ll pick up most of the details,
but you can check Section 15.7, Semantic Predicates, on page 286 in the refer-
ence chapter for a discussion of the fine print. Armed with embedded actions
and predicates, we’ll be sufficiently prepared to tackle some formidable lan-
guage problems in the next chapter.

11.1 Recognizing Multiple Language Dialects

For our first lesson, we’re going to learn how to use semantic predicates to
deactivate parts of a Java grammar. The effect will be to recognize different
dialects, according to results of evaluating Boolean expressions on-the-fly.
In particular, we’re going to see how the same parser can switch between
allowing and disallowing enumerated types.

The Java language has been extended over the years to include new con-
structs. For example, prior to Java 5, the following declaration was invalid:

predicates/Temp.java
enum Temp { HOT, COLD }

Rather than building separate compilers for the slightly different dialects, the
Java compiler javac has a -source option. Here’s what happens when we try to
compile that enum with Java version 1.4:

$ javac -source 1.4 Temp.java
Temp.java:1: enums are not supported in -source 1.4
(use -source 5 or higher to enable enums)
enum Temp { HOT, COLD }
^
1 error
$ javac Temp.java # javac assumes the latest dialect; compiles fine.

Introducing enumerated types flipped enum from an identifier to a keyword,
causing a backward-compatibility issue. Lots of legacy code uses enum as a
variable like this: int enum;. With an option on the compiler to recognize the
earlier dialect, we don’t have to alter ancient code just to compile it again.

To get a taste for how javac handles multiple dialects, let’s build a grammar
that recognizes a tiny piece of Java: just enum declarations and assignment
statements. The goal is to create a grammar that properly recognizes pre–
and post–Java 5 languages, but not both at the same time. For example, using
enum as both a keyword and an identifier should be invalid.

Chapter 11. Altering the Parse with Semantic Predicates • 190

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/Temp.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

enum enum { HOT, COLD } // syntax error in any Java version

Let’s start our solution by looking at the core of a grammar that recognizes
our minimal Java subset and then figure out how to handle the enum keyword.

predicates/Enum.g4
grammar Enum;
@parser::members {public static boolean java5;}

prog: (stat
| enumDecl
)+

;

stat: id '=' expr ';' {System.out.println($id.text+"="+$expr.text);} ;

expr
: id
| INT
;

We’re already familiar with these grammatical constructs and actions, so let’s
move on to enum declarations.

enumDecl
: 'enum' name=id '{' id (',' id)* '}'

{System.out.println("enum "+$name.text);}
;

That rule recognizes the (simplified) syntax of an enumerated type, but there’s
nothing to suggest that enums are sometimes illegal. And that brings us to the
heart of the matter: turning alternatives on and off with semantic predicates.

predicates/Enum.g4
enumDecl

: {java5}? 'enum' name=id '{' id (',' id)* '}'
{System.out.println("enum "+$name.text);}

;

Predicate {java5}? evaluates to true or false at runtime, deactivating that
alternative when java5 is false.

You’ll notice that we’re using rule id instead of just token ID like we usually
do. That’s because the notion of an identifier includes enum when recognizing
pre–Java 5. (Our lexer returns enum as a keyword, not an identifier.) To express
that choice, we need a rule with a semantic predicate.

predicates/Enum.g4
id : ID

| {!java5}? 'enum'
;

report erratum • discuss

Recognizing Multiple Language Dialects • 191

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The {!java5}? predicate allows enum to act as an identifier only when not in
Java 5 mode. It literally deactivates the second alternative when java5 is true.
Internally, ANTLR parsers view rule id using a graph data structure, sort of
like this:

ID
id

{!java5}? 'enum'

The scissors icon indicates that the parser snips that branch from the graph
when !java5 evaluates to false (when java5 is true). Notice that because the
predicates are mutually exclusive, enum declarations and enum-as-identifiers
are mutually exclusive constructs.

We could use grun to test the grammar, but we need a test rig that can flip
between Java dialects. Here are the relevant bits from TestEnum that support
a -java5 option for turning on Java 5 mode:

predicates/TestEnum.java
int i = 0;
EnumParser.java5 = false; // assume non-Java5 mode by default
if (args.length>0 && args[i].equals("-java5")) {

EnumParser.java5 = true;
i++;

}

Now let’s build and compile everything.

$ antlr4 -no-listener Enum.g4
$ javac Enum*.java TestEnum.java

Let’s start with pre–Java 5 mode and make sure it allows enum as an identifier
and that it doesn’t allow enumerated types.

$ java TestEnum➾
enum = 0;➾
EOF➾
enum=0❮

$ java TestEnum➾
enum Temp { HOT, COLD }➾
EOF➾
line 1:0 no viable alternative at input 'enum'❮

Java 5 mode, in contrast, shouldn’t consider enum to be an identifier, but it
should allow enumerated types.

Chapter 11. Altering the Parse with Semantic Predicates • 192

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/TestEnum.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ java TestEnum -java5➾
enum = 0;➾
EOF➾
line 1:0 no viable alternative at input 'enum'❮

$ java TestEnum -java5➾
enum Temp { HOT, COLD }➾
EOF➾
enum Temp❮

Everything checks out, but let’s take a look at predicate placement before
moving on. Predicates work by activating or deactivating everything that could
be matched after passing through the predicate. That means we don’t techni-
cally need to put the {java5}? predicate in enumDecl proper. We could drag it
out and put it in front of the call to that rule instead.

prog: ({java5}? enumDecl
| stat
)+

;

They are functionally equivalent, and their placement in this case is a matter
of style. The key is that the parser must encounter a predicate somewhere in
the first alternative of the (...)+ subrule before reaching the 'enum' token refer-
ence in enumDecl.

And that’s how to build a grammar that supports multiple dialects using a
runtime Boolean switch. To build a real Java grammar, you could incorporate
these predicates into the appropriate rules of a grammar, which we’ve called
enumDecl and id here.

As with embedded actions, semantic predicates are also occasionally useful
in the lexer.

11.2 Deactivating Tokens

In this section, we’re going to solve the same problem again, but this time
using predicates in the lexer instead of the parser. The idea is that predicates
in the lexer activate and deactivate tokens rather than phrases in the language.
Our approach will be to deactivate enum as a keyword and match it as a regular
identifier in pre–Java 5 mode. In Java 5 mode, we want to separate enum out
as its own keyword token. This simplifies the parser considerably because it
can match an identifier just by referencing the usual ID token, rather than
an id rule.

report erratum • discuss

Deactivating Tokens • 193

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

predicates/Enum2.g4
stat: ID '=' expr ';' {System.out.println($ID.text+"="+$expr.text);} ;

expr: ID
| INT
;

The lexer sends an ID only when it’s appropriate for the current dialect. To
pull this off, we need just one predicate in a lexical rule that matches enum.

predicates/Enum2.g4
ENUM: 'enum' {java5}? ; // must be before ID
ID : [a-zA-Z]+ ;

Notice that the predicate appears on the right edge of the lexical rule instead
of on the left, like we did for parser alternatives. That’s because parsers predict
what’s coming down the road and need to test the predicates before matching
alternatives.

Lexers, on the other hand, don’t predict alternatives. They just look for the
longest match and make decisions after they’ve seen the entire token. (We’ll
learn more about this in the reference chapter, specifically, in Section 15.7,
Semantic Predicates, on page 286.)

When java5 is false, the predicate deactivates rule ENUM. When it’s true, how-
ever, both ENUM and ID match character sequence e-n-u-m. Those two rules
are ambiguous for that input. ANTLR always resolves lexical ambiguities in
favor of the rule specified first, in this case ENUM. If we had reversed the rules,
the lexer would always match e-n-u-m as an ID. It wouldn’t matter whether
ENUM was activated or deactivated.

The beauty of this predicated lexer solution is that we don’t need a predicate
in the parser for deactivating the enum construct when not in Java 5 mode.

predicates/Enum2.g4
// No predicate needed here because 'enum' token undefined if !java5
enumDecl

: 'enum' name=ID '{' ID (',' ID)* '}'
{System.out.println("enum "+$name.text);}

;

Token 'enum', referenced at the start of the alternative, is looking for a specific
keyword token. The lexer can present that to the parser only in Java 5 mode,
so enumDecl will never match unless java5 is true.

Let’s verify now that our lexer-based solution correctly recognizes constructs
in the two dialects. In non-Java-5 mode, enum is an identifier.

Chapter 11. Altering the Parse with Semantic Predicates • 194

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum2.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum2.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/Enum2.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ antlr4 -no-listener Enum2.g4➾
$ javac Enum2*.java TestEnum2.java➾
$ java TestEnum2➾
enum = 0;➾
EOF➾
enum=0❮

Because enum is an identifier, not a keyword token, the parser will never
attempt to match enumDecl. It has no choice but to treat enum Temp { HOT, COLD
} as an assignment, leading to syntax errors.

$ java TestEnum2➾
enum Temp { HOT, COLD }➾
EOF➾
line 1:5 missing '=' at 'Temp'❮
line 1:15 mismatched input ',' expecting '='
line 1:22 mismatched input '}' expecting '='

In this case, ANTLR’s error recovery realizes it doesn’t have a valid assignment
and scarfs tokens until it finds something that can start an assignment.

In Java 5 mode, an assignment to enum is invalid, but an enumerated type is
valid.

$ java TestEnum2 -java5➾
enum = 0;➾
EOF➾
line 1:5 mismatched input '=' expecting ID❮
$ java TestEnum2 -java5➾
enum Temp { HOT, COLD }➾
EOF➾
enum Temp❮

If we wanted to avoid predicates, which can slow down the lexer, we could do
away with the ENUM rule altogether and match enum always as an identifier.
Then we’d flip the token type appropriately like we did in Section 10.3, Recog-
nizing Languages Whose Keywords Aren't Fixed, on page 185.

ID : [a-zA-Z]+
{if (java5 && getText().equals("enum")) setType(Enum2Parser.ENUM);}

;

We would also need a token definition for ENUM.

tokens { ENUM }

It’s a good idea to avoid embedding predicates in the parser when possible
for efficiency and clarity reasons. Instead, I recommend choosing one of the
lexer-based solutions in this section to support the Java dialects related to

report erratum • discuss

Deactivating Tokens • 195

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

enum. Note that predicates slow the lexer down as well, so try to do without
them entirely.

That’s it for the basic syntax and usage of semantic predicates in the parser
and the lexer. Predicates offer a straightforward way to selectively deactivate
parts of a grammar, which lets us recognize dialects of the same language
using the same grammar. Moreover, we can switch between dialects dynami-
cally by flipping the value of a Boolean expression. Now let’s investigate the
second major use case: using predicates to resolve ambiguous input phrases
in the parser.

11.3 Recognizing Ambiguous Phrases

We’ve just seen how to strip away parts of a grammar based upon a simple
Boolean variable. It wasn’t that the grammar matched the same input in
multiple ways; we simply wanted to turn off certain language constructs. Now
our goal is to force the parser to deactivate all but one interpretation of an
ambiguous input phrase. Using our maze analogy, a maze and passphrase
are ambiguous when we can follow multiple paths through the maze to the
exit using that single passphrase. Predicates are like doors on path forks that
we can open and close to direct movement through the maze.

Language Ambiguities Are Bad...Umkay?

Wise language designers deliberately avoid ambiguous constructs because they make
it hard to read code. For example, f[0] in Ruby is either a reference to the first element
of array f or a function call to f() that returns an array, which we then index. To make
things even more fun, f [0] with a space before [0] passes an array with 0 in it to
function f() as an argument. This all happens because parentheses are optional in
Ruby for function calls. Ruby aficionados currently recommend using parentheses
because of these very ambiguities.

Before we begin, let me point out that having more than one way to match
an input phrase in a grammar is almost always a grammar bug. In most
languages, the syntax alone uniquely dictates how to interpret all valid sen-
tences. (See the sidebar Language Ambiguities Are Bad...Umkay?, on page
196.) That means our grammars should match each input stream in just one
way. If we find multiple interpretations, we should rewrite the grammar to
strip out the invalid interpretation(s).

That said, there are phrases in some languages where syntax alone just isn’t
enough to identify the meaning. Grammars for these languages will necessar-
ily be ambiguous, but the meaning of syntactically ambiguous phrases will

Chapter 11. Altering the Parse with Semantic Predicates • 196

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

be clear given sufficient context, such as how identifiers are defined (for
example, as types or methods). We’ll need predicates to properly select an
interpretation for each ambiguous phrase by asking context questions. If a
predicate successfully resolves a grammar ambiguity for an input phrase,
then we say that the phrase is context-sensitive.

In this section, we’re going to explore some ambiguities in the nooks and
crannies of C++. As far as I can tell, C++ is the most difficult programming
language to parse accurately and precisely. We’ll start with function calls vs.
constructor-style type casts and then look at declarations vs. expressions.

Properly Recognizing T(0) in C++

In C++, expression T(0) is either a function call or a constructor-style typecast
depending on whether T is a function or type name. The expression is
ambiguous because the same phrase syntax applies to both interpretations.
To get the right interpretation, the parser needs to deactivate one of the
alternatives according to how T is defined in the program. The following
grossly simplified C++ expression rule has two predicates that check the ID
to see whether it’s a function or type name:

predicates/CppExpr.g4
/** Distinguish between alts 1, 2 using idealized predicates as demo */
expr: {«isfunc(ID)»}? ID '(' expr ')' // func call with 1 arg

| {«istype(ID)»}? ID '(' expr ')' // ctor-style type cast of expr
| INT // integer literal
| ID // identifier
;

Visually, rule expr looks like the following graph with cut points in front of the
first two alternatives:

{isfunc(ID)}? ID
expr

'(' expr ')'

{istype(ID)}? ID '(' expr ')'

INT

ID

You might be wondering why we simply don’t collapse those two alternatives
into a single one that handles both cases (function calls and type casts). One
reason is that it complicates the job of the parse-tree walker. Instead of two
specific methods, one for each case, there is a single enterCallOrTypecast(). Inside

report erratum • discuss

Recognizing Ambiguous Phrases • 197

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/CppExpr.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

that method we’d have to split the two cases manually. That’s not the end of
the world, though.

The bigger problem is that the ambiguous alternatives are rarely identical
like they are here. For example, the function call alternative would also have
to handle the case where there are no arguments, such as T(). That would not
be a valid typecast, so collapsing the two alternatives wouldn’t work in
practice. It’s also the case that the ambiguous alternatives can be in widely
separated rules, which we’ll consider in the next example.

Properly Recognizing T(i) in C++

Consider a slight variation of our expression: T(i). To keep things simple, let’s
assume that there are no constructor-style type casts in our C++ subset. As
an expression, then, T(i) must be a function call. Unfortunately, it is also
syntactically a valid declaration. It’s the same as phrase T i, which defines
variable i of type T. The only way to tell the difference is again with context.
If T is a type name, then T(i) is a declaration of variable i. Else, it’s a function
call with i as an argument.

We can demonstrate ambiguous alternatives in separate rules with a small
grammar that matches a few bits of C++. Let’s say C++ statements can be
just declarations or expressions.

predicates/CppStat.g4
stat: decl ';' {System.out.println("decl "+$decl.text);}

| expr ';' {System.out.println("expr "+$expr.text);}
;

Syntactically, a declaration can be either T i or T(i).

predicates/CppStat.g4
decl: ID ID // E.g., "Point p"

| ID '(' ID ')' // E.g., "Point (p)", same as ID ID
;

And let’s say that an expression can be an integer literal, a simple identifier,
or a function call with one argument.

predicates/CppStat.g4
expr: INT // integer literal

| ID // identifier
| ID '(' expr ')' // function call
;

If we build and test the grammar on, say, f(i);, we get an ambiguity warning
from the parser (when using the -diagnostics option).

Chapter 11. Altering the Parse with Semantic Predicates • 198

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/CppStat.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/CppStat.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/CppStat.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ antlr4 CppStat.g4➾
$ javac CppStat*.java➾
$ grun CppStat stat -diagnostics➾
f(i);➾
EOF➾
line 1:4 reportAttemptingFullContext d=0, input='f(i);'❮
line 1:4 reportAmbiguity d=0: ambigAlts={1, 2}, input='f(i);'
decl f(i)

The parser starts out by notifying us that it detected a problem trying to parse
the input with the simple SLL(*) parsing strategy. Since that strategy failed,
the parser retried with the more powerful ALL(*) mechanism. See Section
13.7, Maximizing Parser Speed, on page 243. With the full grammar analysis
algorithm engaged, the parser again found a problem. At that point, it knew
that the input was truly ambiguous. If the parser had not found the problem,
it would have printed a reportContextSensitivity message; we’ll learn more about
that after we add predicates.

That input matches both the second alternative of decl and the third alternative
of expr. The parser must choose between them in rule stat. Given two viable
alternatives, the parser resolves the ambiguity by choosing the alternative
specified first (decl). That’s why the parser interprets f(i); as a declaration
instead of an expression.

If we had an “oracle” that could tell us whether an identifier was a type name,
we could resolve the ambiguity with predicates in front of the ambiguous
alternatives.

predicates/PredCppStat.g4
decl: ID ID // E.g., "Point p"

| {istype()}? ID '(' ID ')' // E.g., "Point (p)", same as ID ID
;

expr: INT // integer literal
| ID // identifier
| {!istype()}? ID '(' expr ')' // function call
;

The istype() helper method in the predicates asks the parser for the current
token, gets its text, and looks it up in our predefined types table.

predicates/PredCppStat.g4
@parser::members {
Set<String> types = new HashSet<String>() {{add("T");}};
boolean istype() { return types.contains(getCurrentToken().getText()); }
}

report erratum • discuss

Recognizing Ambiguous Phrases • 199

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/predicates/PredCppStat.g4
http://media.pragprog.com/titles/tpantlr2/code/predicates/PredCppStat.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

When we test this predicated version of our grammar, input f(i); is interpreted
properly as a function call expression, not a declaration. Input T(i); is unam-
biguously interpreted as a declaration.

$ antlr4 PredCppStat.g4➾
$ javac PredCppStat*.java➾
$ grun PredCppStat stat -diagnostics➾
f(i);➾
EOF➾
expr f(i)❮
$ grun PredCppStat stat -diagnostics➾
T(i);➾
EOF➾
decl T(i)❮

The following parse trees (created using the grun -ps file.ps option) illustrate
clearly that the parser properly interprets the input phrases:

(T

decl ;

)i

stat

i

expr(

expr

f

stat

;

)

The key nodes in the parse tree are the underlined parents of T and f. Those
internal nodes tell us what kind of thing the parser matched. Remember that
the idea behind recognition is that we can distinguish one phrase from the
other and can identify the constituent components. We could match any
possible input file with grammar fragment .+ (match one or more of any
symbol), but it wouldn’t tell us anything about the input. Getting the correct
structure from the input is crucial to building a language application.

The ambiguities in these C++ examples disappear because the predicates cut
out the improper interpretation. Unfortunately, there are some ambiguities
for which no predicate exists to resolve them. Let’s tackle one more C++
example to see how this can happen.

Properly Recognizing T(i)[5] in C++

C++ is exciting because some phrases have two valid meanings. Consider the
C++ phrase T(i)[5]. Syntactically this looks like both a declaration and an
expression even if we know that T is a type name. That means we can’t test
identifier T and switch interpretations because there are two interpretations
when T is a type name.

Chapter 11. Altering the Parse with Semantic Predicates • 200

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The declaration interpretation is as an array of five T elements: T i[5]. The
expression interpretation is a typecast of i to T and then an index operation
on the resulting array.

The C++ language specification document resolves this ambiguity by always
choosing declarations over expressions. The language specification unambigu-
ously tells us humans how to interpret T(i)[5], but it’s impossible to build a
conventional grammar that is unambiguous even if we add semantic predi-
cates.

Fortunately, the parser resolves this ambiguity automatically so that it behaves
naturally. Parsers resolve ambiguities by choosing the alternative specified
first. So, we just have to make sure we put the decl alternative before the expr
alternative in stat.

There’s one final complication to consider when parsing C++.

Resolving Forward References

To compute our types table from the previous section or some other table to
distinguish functions from type names, a real C++ parser would have to track
names as it encountered them during the parse. Tracking symbols in C++ is
a bit tricky but conceptually not a problem. We learned how to track name-
value pairs for our calculator in the previous chapter. The problem is that
C++ sometimes allows forward references to symbols like method and variable
names. That means we might not know that T is a function name until after
the parser has seen expression T(i). Gulp.

This should give you some idea of why C++ is so hard to parse. The only
solution is to make multiple passes over the input or over an internal repre-
sentation of the input such as a parse tree.

Using ANTLR, the simplest approach would probably be to tokenize the input,
scan it quickly to find and record all of the symbol definitions, and then parse
those tokens again “with feeling” to get the proper parse tree.

While most languages don’t have such diabolical ambiguity-related issues,
just about every language is ambiguous simply because it contains arithmetic
expressions. For example, in Section 5.4, Dealing with Precedence, Left
Recursion, and Associativity, on page 69, we saw that 1+2*3 is ambiguous
because we can interpret it as (1+2)*3 or 1+(2*3).

The behavior of semantic predicates is more or less straightforward if we think
of them as simple Boolean expressions that turn alternatives on and off.
Unfortunately, things can get fairly complicated in grammars with multiple

report erratum • discuss

Recognizing Ambiguous Phrases • 201

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

predicates and embedded actions. The reference chapter goes over the details
of when and how ANTLR uses predicates. If you don’t plan on using lots of
predicates mixed with actions in your grammar, you can probably skip Section
15.7, Semantic Predicates, on page 286. Later these details might help explain
some perplexing grammar behavior.

Now that we know how to customize generated parsers using actions and
semantic predicates, we have some fearsome skills. In the next chapter, we’re
going to solve some very difficult recognition problems using what we’ve
learned so far in Part III.

Chapter 11. Altering the Parse with Semantic Predicates • 202

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 12

Wielding Lexical Black Magic
In this part of the book, we’ve learned some advanced skills. We know how
to execute arbitrary code while parsing, and we can alter syntax recognition
with semantic predicates. Now it’s time to put those skills to work solving
some challenging language recognition problems but in the lexer this time,
not the parser.

In my experience, if a language problem is hard to solve, most of the head-
scratching occurs in the lexer (well, with the exception of C++, which is hard
all over). That’s counterintuitive because the lexer rules we’ve seen so far
have been pretty simple, such as identifiers, integers, and arithmetic
expression operators. But, consider the harmless-looking two-character Java
sequence: >>. A Java lexer could match it either as the right shift operator
or as two > operators, which the parser could use to close a nested generic
type like List<List<String>>.

The fundamental problem is that the lexer does the tokenizing, but sometimes
only the parser has the context information needed to make tokenizing deci-
sions. We’ll explore this issue in Section 12.2, Context-Sensitive Lexical Prob-
lems, on page 208. During that discussion, we’ll also look at the “keywords
can be identifiers” problem and build a lexer to deal with Python’s context-
sensitive newline handling.

The next problem we’ll look at involves island languages whose sentences
have islands of interesting bits surrounded by a sea of stuff we don’t care
about. Examples include XML and template languages like StringTemplate.
To parse these, we need island grammars and lexical modes, which we’ll
explore in Section 12.3, Islands in the Stream, on page 219.

Finally, we’ll build an ANTLR XML parser and lexer from the XML specification.
It’s a great example of how to deal with input streams containing different

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

contexts (regions), how to draw a line between the parser and lexer, and how
to accept non-ASCII input characters.

To get warmed up, let’s learn how to ignore but not throw out special input
regions such as comments and whitespace. The technique can be used to
solve lots of language translation problems, and we’ll demonstrate the most
common use case here.

12.1 Broadcasting Tokens on Different Channels

Most programming languages ignore whitespace and comments in between
tokens, which means they can appear anywhere. That presents a problem
for a parser since it has to constantly check for optional whitespace and
comment tokens. The common solution is to simply have the lexer match
those tokens but throw them out, which is what we’ve done so far in this
book. For example, our Cymbol grammar from Section 6.4, Parsing Cymbol,
on page 98 threw out whitespace and comments using the skip lexer command.

examples/Cymbol.g4
WS : [\t\n\r]+ -> skip ;

SL_COMMENT
: '//' .*? '\n' -> skip
;

That works great for many applications, such as compilers, because the
comments don’t affect code generation. If, on the other hand, we’re trying to
build a translator to convert legacy code into a modern language, we really
should keep the comments around because they’re part of the program. This
presents a conundrum: we want to keep the comments and whitespace, but
we don’t want to burden the parser with constant checks for them in between
tokens.

Filling Token Channels

ANTLR’s solution is to send the actual language tokens like identifiers to the
parser on one channel and everything else on a different channel. Channels
are like different radio frequencies. The parser tunes to exactly one channel
and ignores tokens on the other channels. Lexer rules are responsible for
putting tokens on different channels, and class CommonTokenStream is responsible
for presenting only one channel to the parser. CommonTokenStream does this
while preserving the original relative token order so we can request the
comments before or after a particular language token. The following image
represents CommonTokenStream’s view of the tokens emitted by a C lexer that
puts comments and whitespace on a hidden channel:

Chapter 12. Wielding Lexical Black Magic • 204

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/examples/Cymbol.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

/* func */ \n \n

void () ;int i

/* func */
void f(int i);

Channel 1 (Hidden)

Channel 0f

0 1 2 3 4 5 6 7 8 9 10Token index:

Lexer
splits

We can just as easily isolate the comments on one channel and the whitespace
on another, leaving the real tokens on the default channel 0.

/* func */

\n \n/* func */
void f(int i); Channel 1 (Hidden)

Channel 0

Channel 2 (Hidden)

void () ;int if

0 1 2 3 4 5 6 7 8 9 10Token index:

Lexer
splits

That way, we can ask for the comments and whitespace separately.

To transmit tokens on a different channel, we use lexer command channel(...)
in the appropriate lexer rule. Let’s demonstrate this technique by altering our
Cymbol grammar to put comments on hidden channel 2 and whitespace on
hidden channel 1, like the last image.

lexmagic/Cymbol.g4
WS : [\t\n\r]+ -> channel(WHITESPACE) ; // channel(1)

SL_COMMENT
: '//' .*? '\n' -> channel(COMMENTS) // channel(2)
;

Constants WHITESPACE and COMMENTS come from a declaration in our grammar.

lexmagic/Cymbol.g4
@lexer::members {

public static final int WHITESPACE = 1;
public static final int COMMENTS = 2;

}

ANTLR translates channel(HIDDEN) to Java as _channel = HIDDEN, which sets class
Lexer’s _channel field to constant HIDDEN. We can use any valid Java qualified
identifier as an argument to command channel().

Testing the grammar with grun shows that the comments appear on channel
2, whitespace appears on channel 1, and the other tokens appear on the
default channel.

report erratum • discuss

Broadcasting Tokens on Different Channels • 205

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Cymbol.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Cymbol.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

$ antlr4 Cymbol.g4➾
$ javac Cymbol*.java➾
$ grun Cymbol file -tokens -tree➾
int i = 3; // testing➾
EOF➾
[@0,0:2='int',<10>,1:0]❮
[@1,3:3=' ',<24>,channel=1,1:3] <-- HIDDEN channel 1
[@2,4:4='i',<22>,1:4]
[@3,5:5=' ',<24>,channel=1,1:5] <-- HIDDEN channel 1
[@4,6:6='=',<11>,1:6]
[@5,7:7=' ',<24>,channel=1,1:7] <-- HIDDEN channel 1
[@6,8:8='3',<23>,1:8]
[@7,9:9=';',<13>,1:9]
[@8,10:10=' ',<24>,channel=1,1:10] <-- HIDDEN channel 1
[@9,11:21='// testing\n',<25>,channel=2,1:11] <-- HIDDEN channel 2
[@10,22:21='<EOF>',<-1>,2:22]
(file (varDecl (type int) i = (expr 3) ;)) <-- parse tree

The parse tree also looks right, which means that the parser correctly inter-
preted the input. The lack of syntax error indicates that the parser didn’t
plow into a comment token. Now let’s figure out how to access hidden com-
ments from a language application.

Accessing Hidden Channels

To illustrate how to access the hidden channels from a language application,
let’s build a parse-tree listener that shifts comments following declarations
to precede the declarations, tweaking them to use /*...*/-style comments. For
example, given the following input:

lexmagic/t.cym
int n = 0; // define a counter
int i = 9;

we want to generate the following output:

/* define a counter */
int n = 0;
int i = 9;

Our basic strategy will be to rewrite the token stream using a TokenStreamRewriter,
as we did in Rewriting the Input Stream, on page 52. Upon seeing a variable
declaration, our application will grab the comment, if any, to the right of the
semicolon and insert it before the first token of the declaration. Here’s a
Cymbol parse-tree listener called CommentShifter that sits inside a test rig class
called ShiftVarComments:

Chapter 12. Wielding Lexical Black Magic • 206

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/t.cym
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

lexmagic/ShiftVarComments.java
public static class CommentShifter extends CymbolBaseListener {Line 1

BufferedTokenStream tokens;-

TokenStreamRewriter rewriter;-

/** Create TokenStreamRewriter attached to token stream-

* sitting between the Cymbol lexer and parser.5

*/-

public CommentShifter(BufferedTokenStream tokens) {-

this.tokens = tokens;-

rewriter = new TokenStreamRewriter(tokens);-

}10

-

@Override-

public void exitVarDecl(CymbolParser.VarDeclContext ctx) {-

Token semi = ctx.getStop();-

int i = semi.getTokenIndex();15

List<Token> cmtChannel =-

tokens.getHiddenTokensToRight(i, CymbolLexer.COMMENTS);-

if (cmtChannel!=null) {-

Token cmt = cmtChannel.get(0);-

if (cmt!=null) {20

String txt = cmt.getText().substring(2);-

String newCmt = "/* " + txt.trim() + " */\n";-

rewriter.insertBefore(ctx.start, newCmt);-

rewriter.replace(cmt, "\n");-

}25

}-

}-

}-

All of the work happens in exitVarDecl(). First we get the token index of the
declaration semicolon (line 14) because we’re looking for comments after that
token. Line 17 asks the token stream if there are any hidden tokens on
channel COMMENTS to the right of the semicolon. For simplicity, the code
assumes there is only one, so line 19 grabs the first comment from the list.
Then we derive the new style comment from the old comment and inject it
using TokenStreamRewriter before the start of the variable declaration (line 23).
Finally, we replace the existing following comment with a newline (line 24),
effectively erasing it.

The test rig itself is the same old story, but at the end, we ask the TokenStream-
Rewriter class to give us the rewritten input with getText().

lexmagic/ShiftVarComments.java
CymbolLexer lexer = new CymbolLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
CymbolParser parser = new CymbolParser(tokens);
RuleContext tree = parser.file();

report erratum • discuss

Broadcasting Tokens on Different Channels • 207

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ShiftVarComments.java
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ShiftVarComments.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ParseTreeWalker walker = new ParseTreeWalker();
➤ CommentShifter shifter = new CommentShifter(tokens);
➤

System.out.print(shifter.rewriter.getText());
walker.walk(shifter, tree);

➤

Here’s the build and test sequence:

$ antlr4 Cymbol.g4
$ javac Cymbol*.java ShiftVarComments.java
$ java ShiftVarComments t.cym
/* define a counter */
int n = 0;
int i = 9;

Note that if we had thrown out whitespace, rather than sending it on a hidden
channel, that output would be all bunched together like intn=0;.

Token channels solve a tricky language translation problem by categorizing
input tokens. Now, we’re going to focus on problems related to the construction
of the tokens themselves.

12.2 Context-Sensitive Lexical Problems

Consider the phrase “Brown leaves in the fall.” It’s ambiguous because there
are two interpretations. If we’re talking about trees, the phrase refers to
nature’s photosynthesis engine. If, on the other hand, we’re discussing a
certain Ms. Jane Brown, the context totally changes the function of those
words. “Leaves” shifts from a noun to a verb.

This situation resembles the problems we solved in Section 11.3, Recognizing
Ambiguous Phrases, on page 196 where context-sensitive C++ phrases like T(0)
could be function calls or type casts depending on how T was defined elsewhere
in the program. Such syntactic ambiguities arose because our C++ lexer sent
vague generic ID tokens to the parser. We needed semantic predicates in the
parser rules to choose between alternative interpretations.

To get rid of the predicates in the parser rules, we could have the lexer send
more precise tokens to the parser such as FUNCTION_NAME vs. TYPE_NAME,
depending on context. (For input “Brown leaves,” we’d have the lexer send
token sequence ADJECTIVE NOUN vs. PROPER_NAME VERB.) Unfortunately, that just
shifts the context-sensitivity problem to the lexer, and the lexer has nowhere
near as much context information as the parser. That’s why we predicated
parser rules in the previous chapter instead of trying to use lexer context to
send more precise tokens to the parser.

Chapter 12. Wielding Lexical Black Magic • 208

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Hack Alert: Parser Feedback

A common practice that’s been around forever involves sending feedback from the
parser to the lexer so that the lexer can send precise tokens to the parser. The parser
can then be simpler because of the reduction in predicates. Unfortunately, this is not
possible with ANTLR grammars because ANTLR-generated parsers often look very
far ahead in the token stream to make parsing decisions. That means the lexer could
be asked to tokenize input characters long before the parser has had a chance to
execute actions that provide context information to the lexer.

We can’t always escape context-sensitivity issues related to tokenizing input
characters. In this section, we’re going to look at three lexical problems that
fit into the context-sensitivity bucket.

• The same token character sequence can mean different things to the parser.
We’ll tackle the well-known “keywords can also be identifiers” problem.

• The same character sequence can be one token or multiple. We’ll see how
to treat Java character sequence >> either as two close-type-parameter
tokens or as a single right shift operator token.

• The same token must sometimes be ignored and sometimes be recognized
by the parser. We’ll learn how to distinguish between Python’s physical
and logical input lines. The solution requires both lexical actions and
semantic predicates, techniques we learned in the previous two chapters.

Treating Keywords As Identifiers

Lots of languages, both old and new, allow keywords as identifiers, depending
on the context. In Fortran, we could say things like end = goto + if/while. C#
supports SQL queries with its Language-Integrated Query (LINQ) feature.
Queries begin with keyword from, but we can also use from as a variable: x =
from + where;. That’s unambiguously an expression, not a query syntactically,
so the lexer should treat from as an identifier, not a keyword. The problem is
that the lexer doesn’t parse the input. It doesn’t know whether to send, say,
KEYWORD_FROM or ID to the parser.

There are two approaches to allowing keywords to act as identifiers in some
syntactic contexts. The first approach has the lexer pass all keywords to the
parser as keyword token types, and then we create a parser id rule that
matches ID and any of the keywords. The second approach has the lexer pass
keywords as identifiers, and then we use predicates to test identifier names
in the parser like this:

report erratum • discuss

Context-Sensitive Lexical Problems • 209

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

When in Paris...

I worked in France in the late 1980s and quickly found a problem when calling people
on the phone. When the receiving end asked who was calling, I’d reply Monsieur Parr,
but Parr sounds just like part, the third-person singular of the verb “to leave.” It
sounds like I’m saying that I’m going to hang up. Hilarious.

Here’s a fun tongue twister in French where each word requires heavy context to
decipher: “Si six cent scies scient six cent saucisses, six cent six scies scieront six
cent six saucissons.” The written form is repetitive but clear. When spoken, however,
the pronunciation in English is something like this: “See see saw, see see see saw,
sawcease, see saw see see seeron see saw see sawcease.” The translation is “If six
hundred saws saw six hundred sausages, six hundred and six saws will saw six
hundred six sausages.” Don’t make fun of the French for the fact that si, six, scies,
and scient all sound exactly the same. English has words that are written the same
but pronounced differently, like read (present tense) and read (past tense)!

keyIF : {_input.LT(1).getText().equals("if")}? ID ;

That’s pretty ugly, and likely slow, so we’ll stick with the first approach. (For
completeness, I’ve left a small but working predicated keyword example in
PredKeyword.g4.)

To illustrate the recommended approach, here’s a simple grammar that
matches nutty statements like if if then call call;:

lexmagic/IDKeyword.g4
grammar IDKeyword;

prog: stat+ ;

stat: 'if' expr 'then' stat
| 'call' id ';'
| ';'
;

expr: id ;

id : 'if' | 'call' | 'then' | ID ;

ID : [a-z]+ ;
WS : [\r\n]+ -> skip ;

In a nutshell, the approach replaces all references to token ID with references
to rule id. If you’re faced with a language that allows different sets of keywords
to be identifiers in different contexts, you’ll need more than one id rule (one
per context).

Chapter 12. Wielding Lexical Black Magic • 210

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/IDKeyword.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Here’s the build and test sequence for grammar IDKeyword:

$ antlr4 IDKeyword.g4➾
$ javac IDKeyword*.java➾
$ grun IDKeyword prog➾
if if then call call;➾
EOF➾

The parse tree shows that the grammar treats the second if and second call
symbols as identifiers.

id

then

id

if

;

stat

stat

callif

expr

call

prog

In this problem, the lexer has to decide whether to return keyword or identi-
fier tokens, but it doesn’t have to worry about which characters constitute
the tokens. Now we’re going to work on a problem where the lexer doesn’t
know how much input to consume for each token.

Avoiding the Maximal Munch Ambiguity

There is a general assumption made by lexer-generator tools that lexers should
match the longest possible token at each input position. That assumption
usually gives lexers the most natural behavior. For example, given C input
+=, a C lexer should match the single token +=, not two separate tokens, as
in + and =. Unfortunately, there are a few cases we need to handle differently.

In C++, we can’t close nested parameterized types with a double angle
bracket like this: A<B<C>>. We have to use a space in between the final angle
brackets, A<B<C> >, so the lexer doesn’t confuse the double angle brackets
with the right shift operator, >>.1 It was considered a hard enough problem
that the designers of C++ altered the language to overcome a nasty lexical
implementation problem.

A number of suitable solutions have since popped up, but the simplest is to
never have the lexer match the >> character sequence as a right shift operator.
Instead, the lexer sends two > tokens to the parser, which can use context

1. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html

report erratum • discuss

Context-Sensitive Lexical Problems • 211

www.it-ebooks.info

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

to pack the tokens together appropriately. For example, a C++ parser
expression rule would match two right angle brackets in a row instead of a
single token. If you look back at the Java of grammar from Section 4.3,
Building a Translator with a Listener, on page 42, you’ll see an example
implementation of this approach. Here are two expr rule alternatives that
combine single-character tokens into multicharacter operators:

tour/Java.g4
| expression ('<' '<' | '>' '>' '>' | '>' '>') expression
| expression ('<' '=' | '>' '=' | '>' | '<') expression

Let’s look at the tokens passed by the lexer to the parser for the shift operator.

$ antlr4 Java.g4➾
$ javac Java*.java➾
$ grun Java tokens -tokens➾
i = 1 >> 5;➾
EOF➾
[@0,0:0='i',<98>,1:0]❮
[@1,1:1=' ',<100>,channel=1,1:1]
[@2,2:2='=',<25>,1:2]
[@3,3:3=' ',<100>,channel=1,1:3]
[@4,4:4='1',<91>,1:4]
[@5,5:5=' ',<100>,channel=1,1:5]
[@6,6:6='>',<81>,1:6] <-- two '>' tokens not one '>>'
[@7,7:7='>',<81>,1:7]
[@8,8:8=' ',<100>,channel=1,1:8]
[@9,9:9='5',<91>,1:9]
[@10,10:10=';',<77>,1:10]
[@11,11:11='\n',<100>,channel=1,1:11]
[@12,12:11='<EOF>',<-1>,2:12]

And here’s what the token stream looks like for a nested generic type reference:

$ grun Java tokens -tokens➾
List<List<String>> x;➾
EOF➾
[@0,0:3='List',<98>,1:0]❮
[@1,4:4='<',<5>,1:4]
[@2,5:8='List',<98>,1:5]
[@3,9:9='<',<5>,1:9]
[@4,10:15='String',<98>,1:10]
[@5,16:16='>',<81>,1:16]
[@6,17:17='>',<81>,1:17]
[@7,18:18=' ',<100>,channel=1,1:18]
[@8,19:19='x',<98>,1:19]
[@9,20:20=';',<77>,1:20]
[@10,21:21='\n',<100>,channel=1,1:21]
[@11,22:21='<EOF>',<-1>,2:22]

Chapter 12. Wielding Lexical Black Magic • 212

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/tour/Java.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Now let’s generate the parse trees for those phrases because they make it
clear how the grammar uses the > tokens.

$ grun Java statement -gui➾
i = 1 >> 5;➾
EOF➾
$ grun Java localVariableDeclarationStatement -gui➾
List<List<String>> x;➾
EOF➾

Here are the parse trees side by side, rooted at rules statement and localVariableDec-
larationStatement with the angle brackets highlighted:

classOrInterfaceType

typeArguments

classOrInterfaceType

variableModifiers

typeArgument

typeArgument

localVariableDeclaration

String

typeArguments

List

<

variableDeclarator

localVariableDeclarationStatement

type

>

classOrInterfaceType

variableDeclaratorstype

variableDeclaratorId

type

>

<

x

List

;

1

primary

integerLiteral

expression

5

expression

expression

=

primary

expression

>

statement

literal

i

statementExpression

>

literal

expression

primary

integerLiteral

;

i = 1 >> 5; List<List<String>> x;

The only problem with splitting the two right angle brackets of the shift operator
is that the parser will also accept angle brackets separated by a space character,
> >. To address this, either we can add semantic predicates to the grammar or
we can check the parse tree afterward using a listener or visitor to ensure that
the > token column numbers are adjacent for shift operators. It’d be inefficient
to use predicates during the parse, so it’s better to check the right shift operators
after the parse. Most language applications need to walk the parse tree anyway.
(Predicates in an expression rule would also break ANTLR’s left-recursive rule
pattern that it knows how to convert to a non-left-recursive version. See Chapter
14, Removing Direct Left Recursion, on page 247.)

report erratum • discuss

Context-Sensitive Lexical Problems • 213

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

At this point, we’ve seen how to put tokens on different channels and how to
split context-sensitive tokens into their smallest valid token components. Now
we’re going to figure out how to treat the same character sequence as two
different token types, depending on the context.

Fun with Python Newlines

Python’s newline handling is very natural for the programmer. Rather than
using a semicolon, newlines terminate statements. Most of us put one state-
ment per line anyway, so typing the semicolon constantly is a nuisance. At
the same time, we don’t want to put really long expressions on the same
physical line, so Python ignores newlines in certain contexts. For example,
Python lets us split method calls over multiple lines like this:

f(1,
2,
3)

To figure out when to ignore newlines, let’s put together all of the bits of
documentation concerning newlines from the Python reference manual.2 The
most important rule is as follows:

Expressions in parentheses, square brackets, or curly braces can be split over
more than one physical line [...].

So, if we try to split expression 1+2 after the + with a newline, Python emits
an error. We can, however, split (1+2) across lines. The manual also says that
“Implicitly continued lines can carry comments” and “Blank continuation
lines are allowed,” like this:

f(1, # first arg

2, # second arg
blank line with a comment

3) # third arg

We can also explicitly join physical lines into one logical line using a backslash.

Two or more physical lines may be joined into logical lines using backslash
characters (\), as follows: when a physical line ends in a backslash that is not
part of a string literal or comment, it is joined with the following, forming a single
logical line, deleting the backslash and the following end-of-line character.

That means we can split lines even outside of grouping symbols like this:

1+\
2

2. http://docs.python.org/reference/lexical_analysis.html

Chapter 12. Wielding Lexical Black Magic • 214

report erratum • discusswww.it-ebooks.info

http://docs.python.org/reference/lexical_analysis.html
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The manual does not explicitly say so, but the “line ends in a backslash”
clause implies that there can’t be a comment between the \ and the newline
character.

The upshot is that either the parser or the lexer needs to toss out some
newlines but not others. As we saw earlier with token channels, having the
parser check all the time for optional whitespace isn’t a good solution. That
means that a Python lexer needs to handle the optional newlines. This then
is another case of syntactic context dictating lexer behavior.

With all of these rules in mind, let’s build a grammar for a trivial version of
Python that matches assignments and simple expressions. We’ll ignore strings
in order to focus solely on proper comments and newline handling. Here are
the syntax rules:

lexmagic/SimplePy.g4
file: stat+ EOF ;

stat: assign NEWLINE
| expr NEWLINE
| NEWLINE // ignore blank lines
;

assign: ID '=' expr ;

expr: expr '+' expr
| '(' expr ')'
| call
| list
| ID
| INT
;

call: ID '(' (expr (',' expr)*)? ')' ;

list: '[' expr (',' expr)* ']' ;

To build the lexer, let’s get the familiar rules out of the way first. The INT rule
for integers is the usual one, and, according to the reference, identifiers look
like this:

identifier ::= (letter|"_") (letter | digit | "_")*
letter ::= lowercase | uppercase

In ANTLR notation, that’s as follows:

lexmagic/SimplePy.g4
ID : [a-zA-Z_] [a-zA-Z_0-9]* ;

report erratum • discuss

Context-Sensitive Lexical Problems • 215

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Then, we need the usual whitespace rule and a rule to match newlines, which
sends NEWLINE tokens to the parser.

lexmagic/SimplePy.g4
/** A logical newline that ends a statement */
NEWLINE

: '\r'? '\n'
;

/** Warning: doesn't handle INDENT/DEDENT Python rules */
WS : [\t]+ -> skip

;

To handle Python’s line comments, we need a rule that strips out the comment
part but doesn’t touch the newline.

lexmagic/SimplePy.g4
/** Match comments. Don't match \n here; we'll send NEWLINE to the parser. */
COMMENT

: '#' ~[\r\n]* -> skip
;

We want NEWLINE to handle all newlines so that the following:

i = 3 # assignment

looks like an assignment followed by NEWLINE.

Now it’s time to handle the special newline stuff. Let’s start with explicit line
joining. We add a rule to match \ immediately followed by a newline, tossing
it out.

lexmagic/SimplePy.g4
/** Ignore backslash newline sequences. This disallows comments
* after the backslash because newline must occur next.
*/

LINE_ESCAPE
: '\\' '\r'? '\n' -> skip
;

That means the parser won’t see either the \ or the newline character(s).

Now we have to make the lexer ignore newlines inside grouping symbols like
parentheses and brackets. That means we need a lexer rule called
IGNORE_NEWLINE that matches newlines like NEWLINE but skips the token if it’s
within grouping symbols. Because those two rules match the same character
sequence, they’re ambiguous, and we need a semantic predicate to differentiate
them. If we imagine for the moment that there’s a magic nesting variable that
is greater than zero when the lexer has seen an open grouping symbol but
not the closing symbol, we can write IGNORE_NEWLINE like this:

Chapter 12. Wielding Lexical Black Magic • 216

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

lexmagic/SimplePy.g4
/** Nested newline within a (..) or [..] are ignored. */
IGNORE_NEWLINE

: '\r'? '\n' {nesting>0}? -> skip
;

That rule must appear before rule NEWLINE so that when the predicate is true,
the lexer resolves the ambiguity by choosing rule IGNORE_NEWLINE. We could
also put a {nesting==0}? predicate in NEWLINE to resolve the order dependency.

Now let’s wiggle this variable appropriately as we see opening and closing
parentheses and brackets. (Our syntax does not allow curly braces.) First,
let’s define the magic nesting variable.

lexmagic/SimplePy.g4
@lexer::members {

int nesting = 0;
}

Then, we need to execute actions that bump nesting up and down as we see
the grouping symbols. The following rules do the trick:

lexmagic/SimplePy.g4
LPAREN : '(' {nesting++;} ;

RPAREN : ')' {nesting--;} ;

LBRACK : '[' {nesting++;} ;

RBRACK : ']' {nesting--;} ;

To be strictly correct, we should use a different variable for parentheses and
for brackets so that we can make sure they balance. But we don’t really have
to worry about imbalances like [1,2) because the parser will detect an error.
Any inexact behavior with ignored newlines is not important in the presence
of such a syntax error.

To test our SimplePy grammar, the following test file exercises the key elements
of Python newline and comment processing: blanks are ignored, newlines are
ignored within grouping symbols, backslashes hide the next newline, and
comments don’t affect newline processing inside grouping symbols.

lexmagic/f.py
a test
f(1, # first arg

2, # second arg
blank line with a comment

3) # third arg

report erratum • discuss

Context-Sensitive Lexical Problems • 217

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/SimplePy.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/f.py
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

g() # on end

1+\
2+\
3

Here’s the build and test sequence showing the token stream sent to the
parser with highlighted NEWLINE tokens:

$ antlr4 SimplePy.g4
$ javac SimplePy*.java
$ grun SimplePy file -tokens f.py

➤ [@0,8:8='\n',<11>,1:8]
[@1,9:9='f',<4>,2:0]
[@2,10:10='(',<6>,2:1]
[@3,11:11='1',<5>,2:2]
[@4,12:12=',',<1>,2:3]
[@5,29:29='2',<5>,4:2]
[@6,30:30=',',<1>,4:3]
[@7,80:80='3',<5>,6:2]
[@8,81:81=')',<7>,6:3]

➤ [@9,94:94='\n',<11>,6:16]
➤ [@10,95:95='\n',<11>,7:0]

[@11,96:96='g',<4>,8:0]
[@12,97:97='(',<6>,8:1]
[@13,98:98=')',<7>,8:2]

➤ [@14,108:108='\n',<11>,8:12]
➤ [@15,109:109='\n',<11>,9:0]

[@16,110:110='1',<5>,10:0]
[@17,111:111='+',<2>,10:1]
[@18,114:114='2',<5>,11:0]
[@19,115:115='+',<2>,11:1]
[@20,118:118='3',<5>,12:0]

➤ [@21,119:119='\n',<11>,12:1]
[@22,120:119='<EOF>',<-1>,13:2]

The key thing to notice is that there are six NEWLINE tokens in the stream but
twelve newlines in file f.py. Our lexer successfully chucks out six newlines.
The parse tree with highlighted newline tokens looks like Figure 11, Parse
tree with highlighted newline tokens, on page 219.

The first newline is a blank line and matched as an empty statement (rule
stat) by the parser. The third and fifth newlines are also empty statements.
The three other newlines terminate expression statements. Running f.py into
a Python interpreter (with suitable f() and g() definitions) confirms that f.py is
valid Python.

We’ve just worked through three kinds of context-sensitivity problems associ-
ated with tokens. The contexts we considered were defined by the syntax, not

Chapter 12. Wielding Lexical Black Magic • 218

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

expr

stat

2

stat

)

1

exprexpr

stat

call

3

\n \n

)expr (

file

2

expr

expr g

call

(

+

<EOF>stat

\n

stat

expr

\n

f

\nexprexpr \n

+

stat

1

expr, 3,

Figure 11—Parse tree with highlighted newline tokens

a region of the input file. Next, we’re going to look at input files that have
isolated regions of interest surrounded by regions we don’t care about.

12.3 Islands in the Stream

The input files we’ve discussed so far all contain a single language. For
example, DOT, CSV, Python, and Java files contain nothing but text conform-
ing to those languages. But, there are file formats that contain random text
surrounding structured regions or islands. We call such formats island lan-
guages and describe them with island grammars. Examples include template
engine languages such as StringTemplate and the LaTeX document prepara-
tion language, but XML is the quintessential island language. XML files contain
structured tags and & entities surrounded by a sea of stuff we don’t care
about. (Because there is some structure between the tags themselves, we
might call XML an archipelago language.)

Classifying something as an island language often depends on our perspective.
If we’re building a C preprocessor, the preprocessor commands form an island
language where the C code is the sea. On the other hand, if we’re building a
C parser suitable for an IDE, the parser must ignore the sea of preprocessor
commands.

Our goal in this section is to learn how to ignore the sea and tokenize the
islands so the parser can verify syntax within those islands. We’ll need both
of those techniques to build a real XML parser in the next section. Let’s start
by learning how to distinguish XML islands from the sea.

report erratum • discuss

Islands in the Stream • 219

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Separating XML Islands from a Sea of Text

To separate XML tags from text, our first thought might be to build an input
character stream filter that strips everything between tags. This might make
it easy for the lexer to identify the islands, but the filter would throw out all
of the text data, which is not what we want. For example, given input
<name>John</name>, we don’t want to throw out John.

Instead, let’s build a baby XML grammar that lumps the text inside of tags
together as one token and the text outside of tags as another token. Since
we’re focusing on the lexer here, we’ll use a single syntactic rule that matches
a bunch of tags, & entities, CDATA sections, and text (the sea).

lexmagic/Tags.g4
grammar Tags;
file : (TAG|ENTITY|TEXT|CDATA)* ;

Rule file makes no attempt to ensure the document is well formed—it just
indicates the kinds of tokens found in an XML file.

To split up an XML file with lexer rules, we can just give rules for the islands
and then a catchall rule called TEXT at the end to match everything else.

lexmagic/Tags.g4
COMMENT : '<!--' .*? '-->' -> skip ;
CDATA : '<![CDATA[' .*? ']]>' ;
TAG : '<' .*? '>' ; // must come after other tag-like structures
ENTITY : '&' .*? ';' ;
TEXT : ~[<&]+ ; // any sequence of chars except < and & chars

Those rules make heavy use of the nongreedy .*? operator (see Matching String
Literals, on page 75) that scans until it sees what follows that operation in
the rule.

Rule TEXT matches one or more characters, as long as the character isn’t the
start of a tag or entity. It’s tempting to put .+ instead of ~[<&]+, but that would
consume until the end of the input once it got into the loop. There’s no string
to match following .+ in TEXT that would tell the loop when to stop.

An important but subtle ambiguity-resolving mechanism is in play here. In
Section 2.3, You Can't Put Too Much Water into a Nuclear Reactor, on page 13,
we learned that ANTLR lexers resolve ambiguities in favor of the rule specified
first in the grammar file. For example, rule TAG matches anything in angle
brackets, which includes comments and CDATA sections. Because we specified
COMMENT and CDATA first, rule TAG matches only those tags that failed to match
the other tag rules.

Chapter 12. Wielding Lexical Black Magic • 220

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Tags.g4
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/Tags.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

As a side note, XML technically doesn’t allow comments that end with ---> or
comments that contain --. Using what we learned in Section 9.4, Error Alter-
natives, on page 170, we could add lexical rules to look for bad comments and
give specific and informative error messages.

BAD_COMMENT1: '<!--' .*? '--->'
{System.err.println("Can't have ---> end comment");} -> skip ;

BAD_COMMENT2: '<!--' ('--'|.)*? '-->'
{System.err.println("Can't have -- in comment");} -> skip ;

I’ve left them out of grammar Tags for simplicity.

Now let’s see what our baby XML grammar does with the following input:

lexmagic/XML-inputs/cat.xml
<?xml version="1.0" encoding="UTF-8"?>
<?do not care?>
<CATALOG>
<PLANT id="45">Orchid</PLANT>
</CATALOG>

Here’s the build and test sequence, using grun to print out the tokens:

$ antlr4 Tags.g4
$ javac Tags*.java
$ grun Tags file -tokens XML-inputs/cat.xml
[@0,0:37='<?xml version="1.0" encoding="UTF-8"?>',<3>,1:0]
[@1,38:38='\n',<5>,1:38]
[@2,39:53='<?do not care?>',<3>,2:0]
[@3,54:54='\n',<5>,2:15]
[@4,55:63='<CATALOG>',<3>,3:0]
[@5,64:64='\n',<5>,3:9]
[@6,65:79='<PLANT id="45">',<3>,4:0]
[@7,80:85='Orchid',<5>,4:15]
[@8,86:93='</PLANT>',<3>,4:21]
[@9,94:94='\n',<5>,4:29]
[@10,95:104='</CATALOG>',<3>,5:0]
[@11,105:105='\n',<5>,5:10]
[@12,106:105='<EOF>',<-1>,6:11]

This baby XML grammar properly reads in XML files and matches a sequence
of the various islands and text. What it doesn’t do is pull apart the tags and
pass the pieces to a parser so it can check the syntax.

Issuing Context-Sensitive Tokens with Lexical Modes

The text inside and outside of tags conform to different languages. For
example, id="45" is just a lump of text outside of a tag, but it’s three tokens
inside of a tag. In a sense, we want an XML lexer to match different sets of
rules depending on the context. ANTLR provides lexical modes that let lexers

report erratum • discuss

Islands in the Stream • 221

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XML-inputs/cat.xml
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

switch between contexts (modes). In this section, we’ll learn to use lexical
modes by improving the baby XML grammar from the previous section so
that it passes tag components to the parser.

Lexical modes allow us to split a single lexer grammar into multiple sublexers.
The lexer can return only those tokens matched by entering a rule in the
current mode. One of the most important requirements for mode switching
is that the language have clear lexical sentinels that can trigger switching
back and forth, such as left and right angle brackets. To be clear, modes rely
on the fact that the lexer doesn’t need syntactic context to distinguish between
different regions in the input.

To keep things simple, let’s build a grammar for an XML subset where tags
contain an identifier but no attributes. We’ll use the default mode to match
the sea outside of tags and another mode to match the inside of tags. When
the lexer matches < in default mode, it should switch to island mode (inside
tag mode) and return a tag start token to the parser. When the inside mode
sees >, it should switch back to default mode and return a tag stop token.
The inside mode also needs rules to match identifiers and /. The following
lexer encodes that strategy:

lexmagic/ModeTagsLexer.g4
lexer grammar ModeTagsLexer;

// Default mode rules (the SEA)
OPEN : '<' -> mode(ISLAND) ; // switch to ISLAND mode
TEXT : ~'<'+ ; // clump all text together

mode ISLAND;
CLOSE : '>' -> mode(DEFAULT_MODE) ; // back to SEA mode
SLASH : '/' ;
ID : [a-zA-Z]+ ; // match/send ID in tag to parser

Rules OPEN and TEXT are in the default mode. OPEN matches a single < and uses
lexer command mode(ISLAND) to switch modes. Upon the next token request
from the parser, the lexer will consider only those rules in ISLAND mode. TEXT
matches any sequence of characters that doesn’t start a tag. Because none
of the lexical rules in this grammar uses lexical command skip, all of them
return a token to the parser when they match.

In ISLAND mode, the lexer matches closing >, /, and ID tokens. When the lexer
sees >, it will execute the lexer command to switch back to the default mode,
identified by constant DEFAULT_MODE in class Lexer. This is how the lexer ping-
pongs back and forth between modes.

Chapter 12. Wielding Lexical Black Magic • 222

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ModeTagsLexer.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The parser for our slightly augmented XML subset matches tags and text
chunks as in grammar Tags, but now we’re using rule tag to match the individ-
ual tag elements instead of a single lumped token.

lexmagic/ModeTagsParser.g4
parser grammar ModeTagsParser;

options { tokenVocab=ModeTagsLexer; } // use tokens from ModeTagsLexer.g4

file: (tag | TEXT)* ;

tag : '<' ID '>'
| '<' '/' ID '>'
;

The only unfamiliar syntax in the parser is the tokenVocab option. When we
have the parser and lexer in separate files, we need to make sure that the
token types and token names from the two files are synchronized. For example,
lexer token OPEN must have the same token type in the parser as it does in
the lexer.

Let’s build the grammar and try it on some simple XML input.

$ antlr4 ModeTagsLexer.g4 # must be done first to get ModeTagsLexer.tokens➾
$ antlr4 ModeTagsParser.g4➾
$ javac ModeTags*.java➾
$ grun ModeTags file -tokens➾
Hello <name>John</name>➾
EOF➾
[@0,0:5='Hello ',<2>,1:0]❮
[@1,6:6='<',<1>,1:6]
[@2,7:10='name',<5>,1:7]
[@3,11:11='>',<3>,1:11]
[@4,12:15='John',<2>,1:12]
[@5,16:16='<',<1>,1:16]
[@6,17:17='/',<4>,1:17]
[@7,18:21='name',<5>,1:18]
[@8,22:22='>',<3>,1:22]
[@9,23:23='\n',<2>,1:23]
[@10,24:23='<EOF>',<-1>,2:24]

The lexer sends <name> to the parser as the three tokens at indexes 1, 2, and
3. Also notice that Hello, which lives in the sea, would match rule ID but only
in ISLAND mode. Since the lexer starts out in default mode, Hello matches as
token TEXT. You can see the difference in the token types between tokens at
index 0 and 2 where name matches as token ID (token type 5).

report erratum • discuss

Islands in the Stream • 223

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/ModeTagsParser.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Another reason that we want to match tag syntax in the parser instead of the
lexer is that the parser has much more flexibility to execute actions. Further-
more, the parser automatically builds a parse tree for us.

< <

Hello

file

\n

name /

tag

name> >

John tag

To use our grammar for an application, we could either use the usual listener
or visitor mechanism or add actions to the grammar. For example, to imple-
ment an XML SAX event mechanism, we could shut off the automatic tree
construction and embed grammar actions to trigger SAX method calls.

Now that we know how to separate the XML islands from the sea and how to
send tag components to a parser, let’s build a real XML parser.

12.4 Parsing and Lexing XML

Because XML is a well-defined language, it’s a good idea to start our XML
project by reviewing the W3C XML language definition.3 Unfortunately, the
XML specification (henceforth the spec) is huge, and it’s very easy to get lost
in all of the details. To make our lives easier, let’s get rid of stuff we don’t
need in order to parse XML files: <!DOCTYPE..> document type definitions (DTDs),
<!ENTITY..> entity declarations, and <!NOTATION..> notation declarations. Besides,
handling those tags wouldn’t teach us anything beyond what we need to
handle the other constructs.

We’re going to start out by building the syntactic rules for XML. The good
news is that we can reuse the informal grammar rules from the spec almost
verbatim by changing them to ANTLR notation.

XML Spec to ANTLR Parser Grammar

Using our experience with XML, we could probably come up with a reasonably
complete and accurate XML grammar. To make sure we don’t forget anything,
however, let’s filter and condense the spec to its key grammatical rules.

document ::= prolog element Misc*
prolog ::= XMLDecl? Misc*
content ::= CharData?

((element | Reference | CDSect | PI | Comment) CharData?)*
element ::= EmptyElemTag

| STag content ETag

3. http://www.w3.org/TR/REC-xml/

Chapter 12. Wielding Lexical Black Magic • 224

report erratum • discusswww.it-ebooks.info

http://www.w3.org/TR/REC-xml/
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'
STag ::= '<' Name (S Attribute)* S? '>'
ETag ::= '</' Name S? '>'
XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'
Attribute ::= Name Eq AttValue
Reference ::= EntityRef | CharRef
Misc ::= Comment | PI | S

There are lots of other rules we’ll need, but they’ll go into our lexer. This is a
good example of where to draw the line, per our discussion in Section 5.6,
Drawing the Line Between Lexer and Parser, on page 79. The key criterion to
follow is whether we need to see inside the element’s structure. For example,
we don’t care about the inside of comments or processing instructions (PI), so
we can have the lexer match them as lumps.

Let’s compare these informal spec rules with the following complete ANTLR
parser grammar. Relative to the grammars we’ve built for languages like JSON
and Cymbol, the XML parser rules are pretty simple.

lexmagic/XMLParser.g4
parser grammar XMLParser;
options { tokenVocab=XMLLexer; }

document : prolog? misc* element misc*;

prolog : XMLDeclOpen attribute* SPECIAL_CLOSE ;

content : chardata?
((element | reference | CDATA | PI | COMMENT) chardata?)* ;

element : '<' Name attribute* '>' content '<' '/' Name '>'
| '<' Name attribute* '/>'
;

reference : EntityRef | CharRef ;

attribute : Name '=' STRING ; // Our STRING is AttValue in spec
/** ``All text that is not markup constitutes the character data of
* the document.''
*/

chardata : TEXT | SEA_WS ;

misc : COMMENT | PI | SEA_WS ;

There are a number of important differences between the spec’s rules and ours.
First, the spec rule XMLDecl can match three specific attributes (version, encoding,
and standalone), whereas ours matches any set of attributes inside <?xml ...?>. Later,
a semantic phase would have to check that the attribute names were correct.

report erratum • discuss

Parsing and Lexing XML • 225

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XMLParser.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Alternatively, we could put predicates inside the grammar, but it makes the
grammar hard to read and would slow down the generated parser.

prolog : XMLDecl versionInfo encodingDecl? standalone? SPECIAL_CLOSE ;
versionInfo : {_input.LT(1).getText().equals("version")}? Name '=' STRING ;
encodingDecl : {_input.LT(1).getText().equals("encoding")}? Name '=' STRING ;
standalone : {_input.LT(1).getText().equals("standalone")}? Name '=' STRING ;

The next difference is that our lexer will match and discard whitespace inside
of tags between the attributes, so we don’t need to check for whitespace inside
of our element rule. (element is an expanded version of rule tag from the previous
section.) Our lexer also differentiates between whitespace (SEA_WS) and non-
whitespace text (TEXT) outside of tags but returns both to the parser as tokens.
(The previous two sections lumped all text outside of tags into a single TEXT
token.) That’s because the spec allows whitespace but not text in certain
locations such as before the root element. Therefore, chardata is a parser rule,
not a token in our grammar.

The XML parser is not too bad, but we’re going to earn hazardous-duty pay
building the lexer.

Tokenizing XML

Let’s start our XML lexer by extracting the relevant rules from the spec to see
what we’re dealing with.

Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'
CDSect ::= '<![CDATA[' CData ']]>'
CData ::= (Char* - (Char* ']]>' Char*)) // anything but ']]>'
PI ::= '<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'
/** Any name except 'xml' */
PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))
/** Spec: ``CharData is any string of characters which does not contain the
* start-delimiter of any markup and does not include the
* CDATA-section-close delimiter, "]]>".''
*/

CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)
EntityRef ::= '&' Name ';'
CharRef ::= '&#' [0-9]+ ';'

| '&#x' [0-9a-fA-F]+ ';'
Name ::= NameStartChar (NameChar)*
NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7

| [#x0300-#x036F] | [#x203F-#x2040]
NameStartChar

::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6]
| [#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF]
| [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]
| [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]
| [#x10000-#xEFFFF]

Chapter 12. Wielding Lexical Black Magic • 226

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

AttValue ::= '"' ([^<&"] | Reference)* '"'
| "'" ([^<&'] | Reference)* "'"

S ::= (#x20 | #x9 | #xD | #xA)+

Blech! That looks kind of complicated, but we’ll break it down into three dif-
ferent modes and build them one by one. We’ll need modes to handle outside
tags, inside tags, and inside of the special <?...?> tags, very much like we did
in Issuing Context-Sensitive Tokens with Lexical Modes, on page 221.

When you compare the spec rules to our ANTLR lexer rules, you’ll see that
we can reuse most of the same rule names. The specs notation is quite differ-
ent from ANTLR’s, but we can reuse the spirit of most rule right sides. Let’s
start with the default mode that matches the sea outside of tags. Here’s that
piece of our lexer grammar:

lexmagic/XMLLexer.g4
lexer grammar XMLLexer;

// Default "mode": Everything OUTSIDE of a tag
COMMENT : '<!--' .*? '-->' ;
CDATA : '<![CDATA[' .*? ']]>' ;
/** Scarf all DTD stuff, Entity Declarations like <!ENTITY ...>,
* and Notation Declarations <!NOTATION ...>
*/

DTD : '<!' .*? '>' -> skip ;
EntityRef : '&' Name ';' ;
CharRef : '&#' DIGIT+ ';'

| '&#x' HEXDIGIT+ ';'
;

SEA_WS : (' '|'\t'|'\r'? '\n') ;

OPEN : '<' -> pushMode(INSIDE) ;
XMLDeclOpen : '<?xml' S -> pushMode(INSIDE) ;
SPECIAL_OPEN: '<?' Name -> more, pushMode(PROC_INSTR) ;

TEXT : ~[<&]+ ; // match any 16 bit char other than < and &

The lexer grammar starts by dealing with all of the lexical structures that we
can treat as complete tokens. First, we give rules for COMMENT and CDATA tokens.
Next, we match and discard anything related to document, entity, and notation
declarations of the following form: <!...>. We don’t care about that stuff for
this project. We then need rules to match the various entities and the
whitespace token. Jumping ahead for a second, rule TEXT matches anything
else in the input until the start of a tag or entity reference. This is sort of the
“else clause.”

And now for the fun stuff. When the lexer sees the start of the tag, it needs to
switch contexts so that the next lexer token match will find a token that’s valid

report erratum • discuss

Parsing and Lexing XML • 227

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XMLLexer.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

within a tag. That’s what rule OPEN does. Unlike the ModeTagsLexer grammar that
used just the mode command, we’re using pushMode (and popMode in a moment). By
pushing the mode, the lexer can pop the mode to return to the “invoking” mode.
This is useful for nested mode switches, though we’re not doing that here.

The next two rules distinguish between the special <?xml...?> tag and the regular
<?...?> processing instruction. Because we want the parser prolog rule to match
the attributes inside the <?xml...?> tag, we need the lexer to return an XMLDeclOpen
token and then switch to the INSIDE tag mode, which will match the attribute
tokens. Rule SPECIAL_OPEN matches the start of any other <?...?> tag and then
switches to the PROC_INSTR mode (which we’ll see shortly). It also uses an unfamiliar
lexer command called more that instructs the lexer to look for another token and
keep the text of the just-matched token.

Once inside mode PROC_INSTR, we want the lexer to keep consuming and piling up
characters via rule IGNORE until it sees the end of the processing instruction, ?>.

lexmagic/XMLLexer.g4
mode PROC_INSTR;
PI : '?>' -> popMode ; // close <?...?>
IGNORE : . -> more ;

This is all a fancy way to match '<?' .*? '?>' for every processing instruction except
for the <?xml...?> tag. The SPECIAL_OPEN rule matches <?xml also, but the lexer gives
precedence to rule XMLDeclOpen since it’s listed first per our discussion in Section
2.3, You Can't Put Too Much Water into a Nuclear Reactor, on page 13. Unfortu-
nately, we can’t just have a simple rule like '<?' .*? '?>' and do away with the
PROC_INSTR mode. Since '<?' .*? '?>' matches a longer character sequence than '<?xml'
S, the lexer would never match XMLDeclOpen. This is similar to the situation in
Avoiding the Maximal Munch Ambiguity, on page 211, where the lexer favored one
>> token over two > tokens.

Notice that SPECIAL_OPEN references rule Name, which doesn’t appear in either
mode we’ve looked at. It appears in the INSIDE mode we’ll look at next. Modes
just tell the lexer which set of rules it should consider matching when asked
for a token. It’s OK for one rule to call another in a different mode as a helper.
But, keep in mind that the lexer can return token types to the parser only
from those defined within the current lexer mode.

Our final mode is the INSIDE mode, which recognizes all of the elements within
tags like this:

title id="chap2", center="true"

The lexical structure within tags reinforces the idea from Section 5.3, Recog-
nizing Common Language Patterns with ANTLR Grammars, on page 61, that

Chapter 12. Wielding Lexical Black Magic • 228

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XMLLexer.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

many languages look the same from a lexical perspective. For example, a
lexer for C would have no problem tokenizing that tag content.

Here’s our (final) mode that handles the structures within tags:

lexmagic/XMLLexer.g4
mode INSIDE;

CLOSE : '>' -> popMode ;
SPECIAL_CLOSE: '?>' -> popMode ; // close <?xml...?>
SLASH_CLOSE : '/>' -> popMode ;
SLASH : '/' ;
EQUALS : '=' ;
STRING : '"' ~[<"]* '"'

| '\'' ~[<']* '\''
;

Name : NameStartChar NameChar* ;
S : [\t\r\n] -> skip ;

fragment
HEXDIGIT : [a-fA-F0-9] ;

fragment
DIGIT : [0-9] ;

fragment
NameChar : NameStartChar

| '-' | '.' | DIGIT
| '\u00B7'
| '\u0300'..'\u036F'
| '\u203F'..'\u2040'
;

fragment
NameStartChar

: [:a-zA-Z]
| '\u2070'..'\u218F'
| '\u2C00'..'\u2FEF'
| '\u3001'..'\uD7FF'
| '\uF900'..'\uFDCF'
| '\uFDF0'..'\uFFFD'
;

The first three rules match the end tag sequences. Here is where the popMode
lexical command comes in handy. We don’t have to specify the mode to switch
to; the rules can just say “pop.” The previous mode is on a mode stack.

Rule STRING matches rule AttValue from the spec and differs only in that STRING
does not specifically match entities inside strings. We don’t care about the
inside of strings, so there’s no point in carefully matching those characters.

report erratum • discuss

Parsing and Lexing XML • 229

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XMLLexer.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We just have to make sure that we don’t allow < or quotes inside of strings,
per the spec.

Now that we have a parser and lexer grammar, let’s build and test them.

Testing Our XML Grammar

As usual, we need to run ANTLR on the two grammars, being careful to process
the lexer first because the parser depends on the token types generated by
ANTLR for XMLLexer.g4.

$ antlr4 XMLLexer.g4
$ antlr4 XMLParser.g4
$ javac XML*.java

Here’s a sample XML input file:

lexmagic/XML-inputs/entity.xml
<!-- a comment
-->
<root><!-- comment --><message>if salary < 1000</message>
' <a>hi <foo/>
</root>

Let’s use grun to generate a parse tree.

$ grun XML document -gui XML-inputs/entity.xml

The parse tree indicates that our parser correctly handles comments, entities,
tags, and text.

chardata reference

>

element

< \n

 1000

foo

\n

>

<

> contentcontent

element

element chardata

misc

> a

>

< / message

root

< > \n /

document

chardata

' <

< root<

chardata

content

amessage

element

reference

/>

<!-- comment -->

/

chardatachardata

if salary hi

<

chardata

Now, let’s check to make sure that our parser correctly handles <?xml...?> vs.
other processing instruction tags. Here’s a sample input file:

lexmagic/XML-inputs/cat.xml
<?xml version="1.0" encoding="UTF-8"?>
<?do not care?>
<CATALOG>
<PLANT id="45">Orchid</PLANT>
</CATALOG>

Chapter 12. Wielding Lexical Black Magic • 230

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XML-inputs/entity.xml
http://media.pragprog.com/titles/tpantlr2/code/lexmagic/XML-inputs/cat.xml
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

We can generate a parse tree with this:

$ grun XML document -ps /tmp/t.ps XML-inputs/cat.xml

The following tree shows that the XML declaration tag is properly sent in
pieces to the parser, whereas <?do not care?> comes as one PI chunk.

>

\n

chardata

attribute

< content CATALOG?> <

\n

= "UTF-8" \n

/

misc

< PLANT

<?xml

chardata

element

document

misc

\n <?do not care?>"1.0"

CATALOG

>

=

"45"

PLANT

\nattribute

element

version

<

>

Orchid

id

attribute /

prolog misc

=

chardataencoding

content>

misc

Most of the lexer rules in mode INSIDE deal with properly matching tag names,
using all of the valid Unicode code points. That allows us to recognize, for
example, XML files with Japanese tag names.4 Running sample file weekly-euc-
jp.xml into our parser requires the proper Japanese encoding option for grun.

$ grun XML document -gui -encoding euc-jp XML-inputs/weekly-euc-jp.xml

Figure 12, A window into a dialog box, on page 232 shows a window into the
much larger dialog box.

This XML grammar is a great example of how complexity often resides in the
lexer. Parsers can often be big, but they’re usually not that difficult. When a
language is hard to recognize, it’s usually because it’s hard to group the
characters into tokens. This is either because the lexer really needs syntactic
context to make decisions or because there are different regions in the file
with different lexical rules.

This chapter is big, and we went through a lot of material, but it will serve
as a good resource when you run into challenging recognition problems. We
started out learning how to send different tokens on different channels so
that we can ignore but not throw out key tokens such as comments and
whitespace. Next, we looked at how to solve some context-sensitive lexical
problems such as the pesky keywords-as-identifiers problem. Then, we learned
how to tokenize multiple regions of the input differently using lexical modes,
separating the islands from the sea. In our grand finale, we used lexical modes
to build a precise XML lexer.

4. http://people.apache.org/~edwingo/jaxp-ri-1.2.0-fcs/samples/data/weekly-euc-jp.xml

report erratum • discuss

Parsing and Lexing XML • 231

www.it-ebooks.info

http://people.apache.org/~edwingo/jaxp-ri-1.2.0-fcs/samples/data/weekly-euc-jp.xml
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Figure 12—A window into a dialog box

At this point, we’ve learned a great deal about how to use ANTLR. The next
part of the book is a reference section that fills in a lot of details we avoided
for clarity earlier in the book.

Chapter 12. Wielding Lexical Black Magic • 232

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Part IV

ANTLR Reference

The first three parts of this book were a guide to
using ANTLR, whereas this final part is primarily
reference material. We’ll start by summarizing the
runtime API and looking at how ANTLR handles
left-recursive rules. And, finally, we’ll see the giant
reference chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Exploring the Runtime API
This chapter gives an overview of the ANTLR runtime API and is meant to
kick-start your exploration of the runtime library. It describes the programmer-
facing classes but does not reproduce the details from the Javadoc.1 Please
see the comments on the classes and individual methods for detailed informa-
tion on their usage.

13.1 Library Package Overview

ANTLR’s runtime consists of six packages, with most of the application-facing
classes in the main org.antlr.v4.runtime package. By far the most common classes
are the ones used to launch a parser on some input. Here is the typical code
snippet for a grammar file called X.g and a parse-tree listener called MyListener
that implements XListener:

XLexer lexer = new XLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
XParser parser = new XParser(tokens);
ParseTree tree = parser.XstartRule();

ParseTreeWalker walker = new ParseTreeWalker();
MyListener listener = new MyListener(parser);
walker.walk(listener, tree);

We first encountered this in Section 3.3, Integrating a Generated Parser into
a Java Program, on page 26.

Here is a summary of the packages:

org.antlr.v4.runtime This package contains the most commonly used classes and
interfaces, such as the hierarchies for input streams, character and token
buffers, error handling, token construction, lexing, and parsing.

1. http://www.antlr.org/api

report erratum • discusswww.it-ebooks.info

http://www.antlr.org/api
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

org.antlr.v4.runtime.atn This is used internally for ANTLR’s Adaptive LL(*) lexing
and parsing strategy. The atn term means augmented transition network2

and is a state machine that can represent a grammar where edges repre-
sent grammar elements. ANTLR walks the ATN during lexing and parsing
to make predictions based upon lookahead symbols.

org.antlr.v4.runtime.dfa Using the ATN to make predictions is expensive, so the
runtime caches prediction results in deterministic finite automata (DFA).3

This package holds all of the DFA implementation classes.

org.antlr.v4.runtime.misc This package holds miscellaneous data structures but
also the commonly used TestRig class that we’ve used throughout this book
via command-line alias grun.

org.antlr.v4.runtime.tree ANTLR-generated parsers build parse trees by default,
and this package holds all of the classes and interfaces needed to imple-
ment them. It also contains the basic parse-tree listener, walker, and
visitor mechanisms.

org.antlr.v4.runtime.tree.gui ANTLR ships with a basic parse tree viewer accessible
via tree method inspect(). You can also save trees in PostScript form via
save(). TestRig’s -gui option launches this viewer.

The remaining sections describe the runtime API grouped by functionality.

13.2 Recognizers

ANTLR generates lexers and parsers that are subclasses of Lexer and Parser.
Superclass Recognizer abstracts the notion of recognizing structure within a
sequence of characters or tokens. Recognizers feed off of IntStreams, which we’ll
look at later. Here is the inheritance and interface implementation relation-
ships (interfaces are in italics).

TokenSource Lexer

Recognizer Parser

Lexer implements interface TokenSource, which specifies the core lexer function-
ality: nextToken(), getLine(), and getCharPositionInLine(). Rolling our own lexer to use
with an ANTLR parser grammar is not too much work. Let’s build a lexer that
tokenizes simple identifiers and integers like the following input file:

2. http://en.wikipedia.org/wiki/Augmented_transition_network
3. http://en.wikipedia.org/wiki/Deterministic_finite_automaton

Chapter 13. Exploring the Runtime API • 236

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Augmented_transition_network
http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

api/Simple-input
a 343x
abc 9 ;

Here’s the core of a handbuilt lexer:

api/SimpleLexer.java
@Override
public Token nextToken() {

while (true) {
if (c==(char)CharStream.EOF) return createToken(Token.EOF);
while (Character.isWhitespace(c)) consume(); // toss out whitespace
startCharIndex = input.index();
startLine = getLine();
startCharPositionInLine = getCharPositionInLine();
if (c==';') {

consume();
return createToken(SEMI);

}
else if (c>='0' && c<='9') {

while (c>='0' && c<='9') consume();
return createToken(INT);

}
else if (c>='a' && c<='z') { // VERY simple ID

while (c>='a' && c<='z') consume();
return createToken(ID);

}
// error; consume and try again
consume();

}
}

protected Token createToken(int ttype) {
String text = null; // we use start..stop indexes in input

Pair<TokenSource, CharStream> source =
new Pair<TokenSource, CharStream>(this, input);

return factory.create(source, ttype, text, Token.DEFAULT_CHANNEL,
startCharIndex, input.index()-1,
startLine, startCharPositionInLine);

}

protected void consume() {
if (c=='\n') {

line++; // \r comes back as a char, but \n means line++
charPositionInLine = 0;

}
if (c!=(char)CharStream.EOF) input.consume();
c = (char)input.LA(1);
charPositionInLine++;

}

report erratum • discuss

Recognizers • 237

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/Simple-input
http://media.pragprog.com/titles/tpantlr2/code/api/SimpleLexer.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

With a handbuilt lexer, we need a way to share the same token names in the
ANTLR parser grammar. For parser code generation, we also need to inform
ANTLR of the token type integer values established in the lexer source. This
is the role of the .tokens file.

api/SimpleLexer.tokens
ID=1
INT=2
SEMI=3

Here’s a simple grammar that feeds off of those token definitions:

api/SimpleParser.g4
parser grammar SimpleParser;
options {

// get token types from SimpleLexer.tokens; don't name it
// SimpleParser.tokens as ANTLR will overwrite!
tokenVocab=SimpleLexer;

}

s : (ID | INT)* SEMI ;

And here’s the build and test sequence:

$ antlr4 SimpleParser.g4
$ javac Simple*.java TestSimple.java
$ java TestSimple Simple-input
(s a 343 x abc 9 ;)

13.3 Input Streams of Characters and Tokens

At the most abstract level, both lexers and parsers check the syntax of integer
streams. Lexers process characters (short integers), and parsers process token
types (integers). That is why the root of the ANTLR input stream class hierar-
chy is called IntStream.

CharStream

IntStream

TokenStream

ANTLRFileStreamANTLRInputStream

BufferedTokenStream CommonTokenStream

UnbufferedCharStream

UnbufferedTokenStream

Interface IntStream defines most of the key operations for a stream, including
methods to consume symbols and fetch lookahead symbols, namely, consume()
and LA(). Because ANTLR recognizers need to scan ahead and rewind the
input, IntStream defines the mark() and seek() methods.

Chapter 13. Exploring the Runtime API • 238

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/SimpleLexer.tokens
http://media.pragprog.com/titles/tpantlr2/code/api/SimpleParser.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

The CharStream and TokenStream subinterfaces add methods to extract text from
the streams. The classes implementing those interfaces typically read all of
the input in one go and buffer it. That’s because it is easier to build those
classes, it provides ready access to the input, and it suits the common case.
If your input is too big to buffer or is infinite (for example, via a socket), you
can use UnbufferedCharStream and UnbufferedTokenStream.

The usual code sequence to perform a parse is to create an input stream,
attach a lexer to it, create a token stream attached to the lexer, and then
create a parser attached to the token stream.

ANTLRInputStream input = new ANTLRFileStream("an-input-file");
//ANTLRInputStream input = new ANTLRInputStream(System.in); // or read stdin
SimpleLexer lexer = new SimpleLexer(input);
CommonTokenStream tokens = new CommonTokenStream(lexer);
SimpleParser parser = new SimpleParser(tokens);
ParseTree t = parser.s();

13.4 Tokens and Token Factories

Lexers break up character streams into Token objects, and parsers apply
grammatical structure to the stream of tokens. Generally, we think of tokens
as immutable after construction in the lexer, but sometimes we need to alter
token fields after we’ve created them. For example, the token streams like to
set the token index of the tokens as they go by. To support this, ANTLR uses
interface WritableToken, which is a kind of Token with “setter” methods. Finally,
we have CommonToken that implements a full-featured token.

Token WritableToken CommonToken

We usually don’t need to define our own kind of tokens, but it’s a useful
capability. Here’s a sample specialized Token implementation that adds a field
to every token object:

api/MyToken.java
import org.antlr.v4.runtime.CharStream;
import org.antlr.v4.runtime.CommonToken;
import org.antlr.v4.runtime.TokenSource;
import org.antlr.v4.runtime.misc.Pair;

/** A Token that tracks the TokenSource name in each token. */
public class MyToken extends CommonToken {

public String srcName;

public MyToken(int type, String text) {
super(type, text);

}

report erratum • discuss

Tokens and Token Factories • 239

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/MyToken.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

public MyToken(Pair<TokenSource, CharStream> source, int type,
int channel, int start, int stop)

{
super(source, type, channel, start, stop);

}

@Override
public String toString() {

String t = super.toString();
return srcName +":"+t;

}
}

To get the lexer to create these special tokens, we need to create a factory
and pass it to the lexer. We also tell the parser so that its error handler can
conjure up the right kind of tokens if necessary.

TokenFactory CommonTokenFactory

Here’s a token factory that creates MyToken objects:

api/MyTokenFactory.java
import org.antlr.v4.runtime.CharStream;
import org.antlr.v4.runtime.TokenFactory;
import org.antlr.v4.runtime.TokenSource;
import org.antlr.v4.runtime.misc.Interval;
import org.antlr.v4.runtime.misc.Pair;

/** A TokenFactory that creates MyToken objects */
public class MyTokenFactory implements TokenFactory<MyToken> {

CharStream input;

public MyTokenFactory(CharStream input) { this.input = input; }
@Override
public MyToken create(int type, String text) {

return new MyToken(type, text);
}
@Override
public MyToken create(Pair<TokenSource, CharStream> source, int type,

String text,
int channel, int start, int stop, int line,
int charPositionInLine)

{
MyToken t = new MyToken(source, type, channel, start, stop);
t.setLine(line);
t.setCharPositionInLine(charPositionInLine);
t.srcName = input.getSourceName();
return t;

}
}

Chapter 13. Exploring the Runtime API • 240

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/MyTokenFactory.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

And here’s some sample code that notifies the lexer and parser of the factory:

api/TestSimpleMyToken.java
ANTLRInputStream input = new ANTLRFileStream(args[0]);
SimpleLexer lexer = new SimpleLexer(input);

➤ MyTokenFactory factory = new MyTokenFactory(input);
➤ lexer.setTokenFactory(factory);

CommonTokenStream tokens = new CommonTokenStream(lexer);

// now, print all tokens
tokens.fill();
List<Token> alltokens = tokens.getTokens();
for (Token t : alltokens) System.out.println(t.toString());

// now parse
SimpleParser parser = new SimpleParser(tokens);

➤ parser.setTokenFactory(factory);
ParseTree t = parser.s();
System.out.println(t.toStringTree(parser));

It reuses the SimpleParser.g4 grammar from before. Here’s the build and test
sequence:

$ antlr4 SimpleParser.g4
$ javac Simple*.java MyToken*.java TestSimpleMyToken.java
$ java TestSimpleMyToken Simple-input
Simple-input:[@0,0:0='a',<1>,1:0]
Simple-input:[@1,2:4='343',<2>,1:2]
Simple-input:[@2,5:5='x',<1>,1:5]
Simple-input:[@3,7:9='abc',<1>,2:1]
Simple-input:[@4,11:11='9',<2>,2:5]
Simple-input:[@5,13:13=';',<3>,2:7]
Simple-input:[@6,15:14='<EOF>',<-1>,3:1]
(s a 343 x abc 9 ;)

The toString() method in MyToken adds the Simple-input: prefix to the normal token
string representation.

13.5 Parse Trees

Interface Tree defines the basic notion of a tree that has a payload and children.
A SyntaxTree is a tree that knows how to associate tree nodes with tokens in a
TokenStream. Getting more specific, interface ParseTree represents a node in a
parse tree. It knows how to return the text associated with all leaf nodes below
it in the tree. We saw sample parse trees in Section 2.4, Building Language
Applications Using Parse Trees, on page 16, and how the nodes correspond
to the types in this class hierarchy. ParseTree also provides the usual visitor
pattern double-dispatch accept() method for ParseTreeVisitor, which we looked at
in Section 2.5, Parse-Tree Listeners and Visitors, on page 17.

report erratum • discuss

Parse Trees • 241

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/TestSimpleMyToken.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ErrorNodeTerminalNode

ParseTreeSyntaxTreeTree

RuleNode RuleContext

TerminalNodeImpl

ErrorNodeImpl

ParserRuleContext

Classes RuleNode and TerminalNode correspond to subtree roots and leaf nodes.
ANTLR creates ErrorNodeImpl nodes during single-token-insertion recovery (see
Recovering from Mismatched Tokens, on page 162).

A RuleContext is a record of a single rule invocation and knows which context
invoked it, if any, by walking up the getParent() chain. ParserRuleContext has a
field to track parse-tree children, if the parser is creating trees. These are
primarily implementation classes so you can focus on the specialized sub-
classes that ANTLR generates for each rule in your grammar.

13.6 Error Listeners and Strategies

There are two key interfaces associated with ANTLR’s syntax error mechanism:
ANTLRErrorListener and ANTLRErrorStrategy. We learned about the former in Section
9.2, Altering and Redirecting ANTLR Error Messages, on page 153, and the latter
in Section 9.5, Altering ANTLR's Error Handling Strategy, on page 171. Listeners
let us alter error messages and where they go. Strategy implementations alter
how parsers react to errors.

ANTLRErrorListener

BaseErrorListener

ConsoleErrorListener

DiagnosticErrorListener

ProxyErrorListener

ANTLRErrorStrategy BailErrorStrategyDefaultErrorStrategy

ANTLR throws specific RecognitionExceptions according to the error. Note that
they are unchecked runtime exceptions, so you don’t have to specify throws
clauses all the time in your methods.

FailedPredicateException

RecognitionExceptionjava.lang.RuntimeException

InputMismatchException

LexerNoViableAltException

NoViableAltException

Chapter 13. Exploring the Runtime API • 242

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

13.7 Maximizing Parser Speed

ANTLR v4’s adaptive parsing strategy is more powerful than v3’s, but it comes
at the cost of a little bit of speed. If you need the most speed and the smallest
memory footprint possible, you can do a two-step parsing strategy. The first
step uses a slightly weaker parsing strategy, SLL(*), that almost always works.
(It’s very similar to v3’s strategy, except it doesn’t need to backtrack.) If the
first parsing step fails, you have to try the full LL(*) parse. After failing the
first step, we don’t know whether it’s a true syntax error or whether it’s
because the SLL(*) strategy wasn’t strong enough. Input that passes the SLL(*)
step is guaranteed to pass the full LL(*), so there’s no point in trying out that
more expensive strategy.

parser.getInterpreter().setSLL(true); // try with simpler/faster SLL(*)
// we don't want error messages or recovery during first try
parser.removeErrorListeners();
parser.setErrorHandler(new BailErrorStrategy());
try {

parser.startRule();
// if we get here, there was no syntax error and SLL(*) was enough;
// there is no need to try full LL(*)

}
catch (RuntimeException ex) {

if (ex.getClass() == RuntimeException.class &&
ex.getCause() instanceof RecognitionException)

{
// The BailErrorStrategy wraps the RecognitionExceptions in
// RuntimeExceptions so we have to make sure we're detecting
// a true RecognitionException not some other kind
tokens.reset(); // rewind input stream
// back to standard listeners/handlers
parser.addErrorListener(ConsoleErrorListener.INSTANCE);
parser.setErrorHandler(new DefaultErrorStrategy());
parser.getInterpreter().setSLL(false); // try full LL(*)
parser.startRule();

}
}

Input that fails the second step is truly syntactically invalid.

13.8 Unbuffered Character and Token Streams

Because ANTLR recognizers buffer up the entire input character stream and
all input tokens by default, they can’t handle input files that are bigger than
a computer’s memory and can’t handle infinite streams like socket connec-
tions. To overcome this, you can use unbuffered versions of the character

report erratum • discuss

Maximizing Parser Speed • 243

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

and token streams, which keep just a small sliding window into the streams:
UnbufferedCharStream and UnbufferedTokenStream.

As a demonstration, here’s a modification of the comma-separated-value
grammar from Section 6.1, Parsing Comma-Separated Values, on page 84
that sums the floating-point values in a two-column file:

api/CSV.g4
/** Rows are two real numbers:

0.9962269825793676, 0.9224608616182103
0.91673278673353, -0.6374985722530822
0.9841464019977713, 0.03539546030010776
...

*/
grammar CSV;

@members {
double x, y; // keep column sums in these fields
}

file: row+ {System.out.printf("%f, %f\n", x, y);} ;

row : a=field ',' b=field '\r'? '\n'
{
x += Double.valueOf($a.start.getText());
y += Double.valueOf($b.start.getText());
}

;

field
: TEXT
;

TEXT : ~[,\n\r]+ ;

If all you care about are the sums of the columns, you need to keep only one
or two tokens in memory at once. To prevent complete buffering, there are
three things to do. First, use the unbuffered streams instead of the usual
ANTLFileStream and CommonTokenStream. Second, pass the lexer a token factory
that copies characters from the input stream into the text of the tokens.
Otherwise, the getText() method for tokens would try to access the input
character stream, which probably would no longer be available. (See the dia-
gram in Section 2.4, Building Language Applications Using Parse Trees, on
page 16 that shows the relationship between tokens and the character stream.)
Finally, ask the parser not to create parse trees. The following test rig has
the key lines highlighted:

Chapter 13. Exploring the Runtime API • 244

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

api/TestCSV.java
import org.antlr.v4.runtime.CharStream;
import org.antlr.v4.runtime.CommonToken;
import org.antlr.v4.runtime.CommonTokenFactory;
import org.antlr.v4.runtime.Token;
import org.antlr.v4.runtime.TokenStream;
import org.antlr.v4.runtime.UnbufferedCharStream;
import org.antlr.v4.runtime.UnbufferedTokenStream;

import java.io.FileInputStream;
import java.io.InputStream;
public class TestCSV {

public static void main(String[] args) throws Exception {
String inputFile = null;
if (args.length>0) inputFile = args[0];
InputStream is = System.in;
if (inputFile!=null) {

is = new FileInputStream(inputFile);
}
CharStream input = new UnbufferedCharStream(is);➤

➤ CSVLexer lex = new CSVLexer(input);
// copy text out of sliding buffer and store in tokens
lex.setTokenFactory(new CommonTokenFactory(true));➤

➤ TokenStream tokens = new UnbufferedTokenStream<CommonToken>(lex);
CSVParser parser = new CSVParser(tokens);
parser.setBuildParseTree(false);➤

parser.file();
}

}

Here’s a sample build and test sequence using a 1,000-line sample file:

$ antlr4 CSV.g4
$ javac TestCSV.java CSV*.java
$ wc sample.csv

1000 2000 39933 sample.csv # 1000 lines, 2000 words, 39933 char
$ java TestCSV sample.csv
1000.542053, 1005.587845

To verify that the recognizer is not buffering up everything, I ran a 310M CSV
input file with 7.8M value pairs into the test rig while restricting the Java VM
to just 10M RAM.

$ wc big.csv
7800000 15600000 310959090 big.csv # 7800000 lines, ...

$ time java -Xmx10M TestCSV big.csv
11695395.953785, 7747174.349207

real 0m43.415s # wall clock duration to compute the sums
user 0m51.186s
sys 0m6.195s

report erratum • discuss

Unbuffered Character and Token Streams • 245

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/api/TestCSV.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

These unbuffered streams are useful when efficiency is the top concern. (You
can even combine them with the technique from the previous section.) Their
disadvantage is that you are forced to buffer things up manually. For example,
you can’t use $text in an action embedded within a rule because it goes to the
input stream and asks for the text (and the text isn’t being buffered).

13.9 Altering ANTLR’s Code Generation

ANTLR uses two things to generate code: a StringTemplate4 group file (con-
taining templates) and a Target subclass called LanguageTarget where Language
is the grammar language option. The StringTemplate group file is org/antlr/v4/
tool/templates/codegen/Language .stg. If you would like to tweak the code generation
templates for, say, Java, all you have to do is copy and modify org/antlr/v4/tool/
templates/codegen/Java.stg. Then, put it in the CLASSPATH before ANTLR’s jar. ANTLR
uses a resource loader to get those templates so it’ll see your modified version
first.

The templates just generate code specific to a grammar. Most of the common
functionality has been factored out into the runtime library. So, Lexer, Parser
and so on are all part of the runtime library, not generated by ANTLR.

To add a new target for language L , you might need to create class LTarget. If
so, place it in package org.antlr.v4.codegen and put it before ANTLR’s jar in the
CLASSPATH. You need this class only if your target needs to alter some of the
default functionality in Target. If no LTarget class is found, ANTLR uses the
Target base class. (This is what it does for the Java language target.)

4. http://www.stringtemplate.org

Chapter 13. Exploring the Runtime API • 246

report erratum • discusswww.it-ebooks.info

http://www.stringtemplate.org
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 14

Removing Direct Left Recursion
In Section 5.4, Dealing with Precedence, Left Recursion, and Associativity, on
page 69, we saw that the natural way to specify arithmetic expressions
grammatically is ambiguous. For example, the following expr can interpret
1+2*3 as (1+2)*3 or 1+(2*3). By giving precedence to the alternatives specified
first, however, ANTLR neatly sidesteps the ambiguity.

left-recursion-removal/Expr.g4
stat: expr ';' ;

expr: expr '*' expr // precedence 4
| expr '+' expr // precedence 3
| INT // primary (precedence 2)
| ID // primary (precedence 1)
;

Rule expr is still left-recursive, though, which traditional top-down grammars (for
example, ANTLR v3) cannot handle. In this chapter, we’re going to explore how
ANTLR deals with left recursion and how it handles operator precedence. In a
nutshell, ANTLR replaces left recursion with a (...)* that compares the precedence
of the previous and next operators.

It’s important to get familiar with the rule transformation because the generated
code reflects the transformed rule, not the original. More importantly, when a
grammar doesn’t give the expected grouping or associativity for operators, we
need to know why. Most users can stop reading after the next section that shows
the valid recursive alternative patterns; advanced users interested in the imple-
mentation details can continue to the second section.

Let’s start by looking at the transformations that ANTLR performs and then
walk through an example to see the precedence climbing in action.1

1. Theodore Norvell coined the term (http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm), but the
original work was done by Keith Clarke (http://antlr.org/papers/Clarke-expr-parsing-1986.pdf).

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/left-recursion-removal/Expr.g4
http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
http://antlr.org/papers/Clarke-expr-parsing-1986.pdf
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

14.1 Direct Left-Recursive Alternative Patterns

ANTLR examines any left-recursive rule looking for one of four subexpression
operator patterns.

binary Any alternative of the form expr op expr or expr (op1|op2|...|opN) expr.
op can be a single-token or multitoken operator. For example, a Java
grammar might treat angle brackets individually instead of treating
operators <=> and >= as single tokens. Here’s an alternative that handles
comparison operators at the same precedence level:

expr: ...
| expr ('<' '=' | '>' '=' | '>' | '<') expr

...
;

op can also be a rule reference. For example, we can factor out those
tokens into another rule.

expr: ...
| expr compareOps expr

...
;

compareOps : ('<' '=' | '>' '=' | '>' | '<') ;

ternary Any alternative of the form expr op1 expr op2 expr. op1 and op2 must
be single-token references. This pattern handles the ?: operator in C-
derived languages:

expr: ...
| expr '?' expr ':' expr

...
;

unary prefix Any alternative of the form elements expr. ANTLR recognizes
any sequence of elements followed by a tail-recursive rule reference as a
unary prefix operation, as long as the alternative does not fit the binary
or ternary pattern. Here are two alternatives with prefix operators:

expr: ...
| '(' type ')' expr

...
| ('+'|'-'|'++'|'--') expr

...
;

unary suffix Any alternative of the form expr elements . As with the prefix
pattern, ANTLR recognizes alternatives with a direct left-recursive rule
reference followed by any sequence of elements, as long as it doesn’t fit

Chapter 14. Removing Direct Left Recursion • 248

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

the binary or ternary pattern. Here are two alternatives with suffix
operators:

expr: ...
| expr '.' Identifier

...
| expr '.' 'super' '(' exprList? ')'

...
;

Any other alternative pattern is considered a primary expression element like
an identifier or an integer but includes things like '(' expr ')' because it doesn’t
fit an operator pattern. This makes sense because the whole point of paren-
theses is to treat the enclosed expression as a single atomic element. These
“other” alternatives can actually appear in any order. ANTLR collects and
deals with them properly. The order of all other alternatives matters. Here
are a few sample primary expression alternatives:

expr: ...
| literal
| Identifier
| type '.' 'class'

...
;

Unless otherwise specified, ANTLR assumes that all operators are left asso-
ciative. In other words, 1+2+3 groups like this: (1+2)+3. Some operators,
however, are right associative, such as assignment and exponentiation, as
we saw in Section 5.4, Dealing with Precedence, Left Recursion, and Associa-
tivity, on page 69. To specify right associativity, use the assoc token option.

expr: expr '^'<assoc=right> expr
...
| expr '='<assoc=right> expr

...
;

In the next section, we’ll take a look at how ANTLR translates these patterns.

14.2 Left-Recursive Rule Transformations

If you turn on the -Xlog ANTLR command-line option, you can find the trans-
formed left-recursive rules in the log file. Here’s what happens to rules stat
and expr from Expr.g4 shown earlier:

// use "antlr4 -Xlog Expr.g4" to see transformed rules
stat: expr[0] ';' ; // match an expr whose operators have any precedence

expr[int _p] // _p is expected minimum precedence level

report erratum • discuss

Left-Recursive Rule Transformations • 249

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

: (INT // match primaries (non-operators)
| ID
)
// match operators as long as their precedence is at or higher than
// expected minimum
({4 >= $_p}? '*' expr[5] // * has precedence 4
| {3 >= $_p}? '+' expr[4] // + has precedence 3
)*

;

Whoa! That’s quite a transformation. Don’t worry about how ANTLR conjures
up all of those parameters to expr. We’re mainly interested in learning a bit
about how those predicates test operator precedence to direct the parse and
get the right groupings.

The key is deciding whether to match the next operator in the current invoca-
tion of expr or to let the calling invocation of expr match the next operator. The
(...)* loop matches operator and right operand pairs. For input 1+2*3, the loop
would match +2 and *3. The purpose of the predicates in the loop alternatives
is to decide whether the parser should match the operator/operand pair
immediately or fall out of the current invocation of expr. For example, predicate
{3 >= $_p}? deactivates the addition alternative if the addition operator’s
precedence, 3, is below the expected minimum precedence, _p, for the current
subexpression.

This Ain’t Operator Precedence Parsing

Don’t confuse this mechanism with operator precedence parsing, despite what you
read on Wikipedia.a Operator precedence parsing can’t handle things like the minus
sign that has two different precedences, one for unary negation and one for binary
subtraction operators. It also can’t handle alternatives that have two adjacent rule
references like expr ops expr. See Compilers: Principles, Techniques, and Tools [ALSU06]
to get the real definition.

a. http://en.wikipedia.org/wiki/Operator-precedence_parser

Parameter _p’s value is always derived from the precedence of the previous
operator. _p starts at 0, since nonrecursive calls to expr pass 0, like stat does:
expr[0]. To see _p in action, let’s look at some parse trees derived from the
transformed rule (showing the value of parameter _p in square brackets). Note
that these parse trees are not what ANTLR would build for us from the original
left-recursive rule. These are the parse trees for the transformed rule, not the
original. Here are some sample inputs and associated parse trees:

Chapter 14. Removing Direct Left Recursion • 250

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Operator-precedence_parser
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

1+2

expr[0]

expr[4]1

2

+

1+2*3

expr[0]

expr[4]1 +

expr[5]2 *

3

1*2+3

expr[0]

expr[5]1 *

2

expr[4]+

3

In the first tree, the initial call to expr has _p of 0, and expr immediately
matches the 1 to the (INT|ID) subrule. Now expr has to decide whether it will
match the + or skip the loop entirely and return. The predicate evaluates as
{3>=0}? and so we enter the loop to match + and then call expr recursively
with an argument of 4. That invocation matches 2 and immediately returns
because there is no more input. expr[0] then returns to the original call to expr
in stat.

The second tree illustrates how expr[0] matches 1, and again {3>=0}? allows
us to match the + operator followed by the second operand, expr[4]. The
recursive call to expr[4] matches the 2 and then evaluates {4 >= 4}?, which lets
the parser proceed to match the * operator followed by the last operand, 3,
via a call to expr[5].

The third parse tree is the most interesting. The initial invocation, expr[0],
matches 1 and then decides to match the * operation because {4>=0}? is true.
That loop then recursively calls expr[5], which immediately matches 2. Now,
inside the call to expr[5], the parser should not match the + because otherwise
the 2+3 would evaluate before the multiply. (In the parse tree, we would see
expr[5] with 2+3 as children instead of just the 2.) Predicate {3 >= 5}? deactivates
that alternative and so expr[5] returns without matching the +. After returning,
expr[0] matches +3 since {3>=0}? is true.

I hope this gives you a good feel for the precedence climbing mechanism. If
you’d like to learn more, Norvell’s description2 goes into a lot of detail.

2. http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

report erratum • discuss

Left-Recursive Rule Transformations • 251

www.it-ebooks.info

http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

CHAPTER 15

Grammar Reference
Most of this book is a guide to using ANTLR. This chapter is a reference and
summarizes grammar syntax and the key semantics of ANTLR grammars. It
is not meant as an isolated and complete description of how to use ANTLR.
The source code for all examples in this book is a good resource and is
available at the website.1

15.1 Grammar Lexicon

The lexicon of ANTLR is familiar to most programmers because it follows the
syntax of C and its derivatives with some extensions for grammatical
descriptions.

Comments

There are single-line, multiline, and Javadoc-style comments.

/** This grammar is an example illustrating the three kinds
* of comments.
*/

grammar T;

/* a multi-line
comment

*/

/** This rule matches a declarator for my language */
decl : ID ; // match a variable name

The Javadoc comments are sent to the parser and are not ignored. These are
allowed only at the start of the grammar and any rule.

1. http://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference

report erratum • discusswww.it-ebooks.info

http://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Identifiers

Token names always start with a capital letter and so do lexer rules as defined
by Java’s Character.isUpperCase() method. Parser rule names always start with a
lowercase letter (those that fail Character.isUpperCase()). The initial character can
be followed by uppercase and lowercase letters, digits, and underscores. Here
are some sample names:

ID, LPAREN, RIGHT_CURLY // token names/rules
expr, simpleDeclarator, d2, header_file // rule names

Like Java, ANTLR accepts Unicode characters in ANTLR names.

grammar 外;

a : '外' ;

To support Unicode parser and lexer rule names, ANTLR uses the following
rule:

ID : a=NameStartChar NameChar*
{
if (Character.isUpperCase(getText().charAt(0))) setType(TOKEN_REF);
else setType(RULE_REF);
}

;

NameChar identifies the valid identifier characters.

fragment
NameChar

: NameStartChar
| '0'..'9'
| '_'
| '\u00B7'
| '\u0300'..'\u036F'
| '\u203F'..'\u2040'
;

NameStartChar is the list of characters that can start an identifier (rule, token,
or label name).

fragment
NameStartChar

: 'A'..'Z' | 'a'..'z'
| '\u00C0'..'\u00D6'
| '\u00D8'..'\u00F6'
| '\u00F8'..'\u02FF'
| '\u0370'..'\u037D'
| '\u037F'..'\u1FFF'
| '\u200C'..'\u200D'

Chapter 15. Grammar Reference • 254

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

| '\u2070'..'\u218F'
| '\u2C00'..'\u2FEF'
| '\u3001'..'\uD7FF'
| '\uF900'..'\uFDCF'
| '\uFDF0'..'\uFFFD'
;

These more or less correspond to isJavaIdentifierPart() and isJavaIdentifierStart() in
Java’s Character class. Make sure to use the -encoding option on the ANTLR tool
if your grammar file is not in UTF-8 format so that ANTLR reads characters
properly.

Literals

ANTLR does not distinguish between character and string literals like most
languages do. All literal strings that are one or more characters in length are
enclosed in single quotes such as ';', 'if', '>=', and '\'' (refers to the one-character
string containing the single quote character). Literals never contain regular
expressions.

Literals can contain Unicode escape sequences of the form \uXXXX, where XXXX
is the hexadecimal Unicode character value. For example, '\u00E8' is the French
letter e with a grave accent: 'è'. ANTLR also understands the usual special
escape sequences: '\n' (newline), '\r' (carriage return), '\t' (tab), '\b' (backspace),
and '\f' (form feed). You can use Unicode characters directly within literals or
use the Unicode escape sequences. See code/reference/Foreign.g4.

grammar Foreign;
a : '外' ;

The recognizers that ANTLR generates assume a character vocabulary con-
taining all Unicode characters. The input file encoding assumed by the runtime
library depends on the target language. For the Java target, the runtime
library assumes files are in UTF-8. Using the constructors, you can specify
a different encoding. See, for example, ANTLR’s ANTLRFileStream.

Actions

Actions are code blocks written in the target language. You can use actions
in a number of places within a grammar, but the syntax is always the same:
arbitrary text surrounded by curly braces. You don’t need to escape a closing
curly character if it’s in a string or comment: {"}"} or {/*}*/;}. If the curlies are
balanced, you also don’t need to escape }: {{...}}. Otherwise, escape extra
curlies with a backslash: {\{} or {\}}. The action text should conform to the
target language as specified with the language option.

report erratum • discuss

Grammar Lexicon • 255

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Embedded code can appear in @header and @members named actions, parser
and lexer rules, exception catching specifications, attribute sections for
parser rules (return values, arguments, and locals), and some rule element
options (currently predicates).

The only interpretation ANTLR does inside actions relates to grammar
attributes; see Token Attributes, on page 271, as well as Chapter 10, Attributes
and Actions, on page 175. Actions embedded within lexer rules are emitted
without any interpretation or translation into generated lexers.

Keywords

Here’s a list of the reserved words in ANTLR grammars: import, fragment, lexer,
parser, grammar, returns, locals, throws, catch, finally, mode, options, tokens. Also, although
it is not a keyword, do not use the word rule as a rule or alternative label name
since it results in RuleContext as a context object; RuleContext clashes with the
built-in class. Further, do not use any keyword of the target language as a
token, label, or rule name. For example, rule if would result in a generated
function called if().

15.2 Grammar Structure

A grammar is essentially a grammar declaration followed by a list of rules
but has the following general form:

/** Optional Javadoc-style comment */
grammar Name;❶
options {...}
import ... ;
tokens {...}
@actionName {...}

«rule1» // parser and lexer rules, possibly intermingled
...
«ruleN»
The filename containing grammar X must be called X .g4. You can specify
options, imports, token specifications, and actions in any order. There can
be at most one each of options, imports, and token specifications. All of those
elements are optional except for the header ❶ and at least one rule. Rules
take the following basic form:

ruleName : «alternative1» | ... | «alternativeN» ;

Parser rule names must start with a lowercase letter, and lexer rules must
start with a capital letter.

Chapter 15. Grammar Reference • 256

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Grammars defined without a prefix on the grammar header are combined
grammars that can contain both lexical and parser rules. To make a parser
grammar that allows only parser rules, use the following header:

parser grammar Name;
...

And, naturally, a pure lexer grammar looks like this:

lexer grammar Name;
...

Only lexer grammars can contain mode specifications.

Section 15.5, Lexer Rules, on page 277 and Section 15.3, Parser Rules, on page
261 contain details on rule syntax. Section 15.8, Options, on page 292 describes
grammar options, and Section 15.4, Actions and Attributes, on page 271 has
information on grammar-level actions. We’ll look at grammar imports, token
specifications, and named actions next.

Grammar imports

Grammar imports let you break up a grammar into logical and reusable chunks,
as we saw in Importing Grammars, on page 36. ANTLR treats imported
grammars very much like object-oriented programming languages treat
superclasses. A grammar inherits all of the rules, tokens specifications, and
named actions from the imported grammar. Rules in the “main grammar”
override rules from imported grammars to implement inheritance.

Think of import as more like a smart include statement (which does not include
rules that are already defined). The result of all imports is a single combined
grammar; the ANTLR code generator sees a complete grammar and has no
idea there were imported grammars.

To process a main grammar, the ANTLR tool loads all of the imported gram-
mars into subordinate grammar objects. It then merges the rules, token types,
and named actions from the imported grammars into the main grammar. In
the following diagram, the grammar on the right illustrates the effect of
grammar MyELang importing grammar ELang:

grammar MyELang;
import ELang;
expr : INT | ID ;
INT : [0-9]+

grammar ELang;
stat : (expr ';')+ ;
expr : INT ;
WS : [\r\t\n]+ -> skip ;
ID : [a-z]+ ;

grammar MyELang;
stat : (expr ';')+ ;
expr : INT | ID ;
INT : [0-9]+
WS : [\r\t\n]+ -> skip ;
ID : [a-z]+ ;

report erratum • discuss

Grammar Structure • 257

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

MyELang inherits rules stat, WS, and ID, but it overrides rule expr and adds INT.
Here’s a sample build and test run that shows MyELang can recognize integer
expressions whereas the original ELang can’t. The third, erroneous input
statement triggers an error message that also demonstrates the parser was
looking for MyELang’s expr, not ELang’s.

$ antlr4 MyELang.g4➾
$ javac MyELang*.java➾
$ grun MyELang stat➾
34;➾
a;➾
;➾
EOF➾
line 3:0 extraneous input ';' expecting {<EOF>, INT, ID}❮

If there were any tokens specifications, the main grammar would merge the
token sets. Any named actions such as @members would be merged. In general,
you should avoid named actions and actions within rules in imported gram-
mars since that limits their reuse. ANTLR also ignores any options in
imported grammars.

Imported grammars can also import other grammars. ANTLR pursues all
imported grammars in a depth-first fashion. If two or more imported grammars
define rule r, ANTLR chooses the first version of r it finds. In the following
diagram, ANTLR examines grammars in the following order: Nested, G1, G3, G2:

grammar Nested;
import G1, G2;
s : r ;

grammar G1;
import G3;
t : A ;

grammar G3;
r : B ;

grammar G2;
r : C;

grammar Nested;
s : r ; // from Nested
r : B ; // from G3
t : A ; // from G1

Nested includes the r rule from G3 because it sees that version before the r in
G2.

Not every kind of grammar can import every other kind of grammar.

• Lexer grammars can import lexer grammars.
• Parser grammars can import parser grammars.
• Combined grammars can import lexer or parser grammars.

Chapter 15. Grammar Reference • 258

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR adds imported rules to the end of the rule list in a main lexer grammar.
That means lexer rules in the main grammar get precedence over imported
rules. For example, if a main grammar defines rule IF : 'if' ; and an imported
grammar defines rule ID : [a-z]+ ; (which also recognizes if), the imported ID won’t
hide the main grammar’s IF token definition.

tokens Section

The purpose of the tokens section is to define token types needed by a grammar
for which there is no associated lexical rule. The basic syntax is as follows:

tokens { «Token1», ..., «TokenN» }

Most of the time, the tokens section is used to define token types needed by
actions in the grammar (as we did in Section 10.3, Recognizing Languages
Whose Keywords Aren't Fixed, on page 185).

// explicitly define keyword token types to avoid implicit definition warnings
tokens { BEGIN, END, IF, THEN, WHILE }
@lexer::members { // keywords map used in lexer to assign token types
Map<String,Integer> keywords = new HashMap<String,Integer>() {{

put("begin", KeywordsParser.BEGIN);
put("end", KeywordsParser.END);
...

}};
}

The tokens section really just defines a set of tokens to add to the overall set.

$ cat Tok.g4
grammar Tok;
tokens { A, B, C }
a : X ;
$ antlr4 Tok.g4
warning(125): Tok.g4:3:4: implicit definition of token X in parser
$ cat Tok.tokens
A=1
B=2
C=3
X=4

Actions at the Grammar Level

Using Actions Outside of Grammar Rules, on page 176, illustrates the use of
named actions at the top level of the grammar file. Currently there are only
two defined actions (for the Java target): header and members. The former injects
code into the generated recognizer class file, before the recognizer class defi-
nition, and the latter injects code into the recognizer class definition, as fields
and methods.

report erratum • discuss

Grammar Structure • 259

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

For combined grammars, ANTLR injects the actions into both the parser and
the lexer. To restrict an action to the generated parser or lexer, use @pars-
er::name or @lexer::name .

Here’s an example where the grammar specifies a package for the generated
code:

reference/foo/Count.g4
grammar Count;

@header {
package foo;
}

@members {
int count = 0;
}

list
@after {System.out.println(count+" ints");}

: INT {count++;} (',' INT {count++;})*
;

INT : [0-9]+ ;
WS : [\r\t\n]+ -> skip ;

The grammar itself should be in directory foo so that ANTLR generates code
in that same foo directory (at least when not using the -o ANTLR tool option).

$ cd foo➾
$ antlr4 Count.g4 # generates code in the current directory (foo)➾
$ ls➾
Count.g4 CountLexer.java CountParser.java❮
Count.tokens CountLexer.tokens
CountBaseListener.java CountListener.java
$ javac *.java➾
$ cd ..➾
$ grun foo.Count list➾
9, 10, 11➾
EOF➾
3 ints❮

The Java compiler expects classes in package foo to be in directory foo.

Now that we’ve seen the overall structure of a grammar, let’s dig into the
parser and lexer rules.

Chapter 15. Grammar Reference • 260

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/foo/Count.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

15.3 Parser Rules

Parsers consist of a set of parser rules in either a parser or a combined gram-
mar. A Java application launches a parser by invoking the rule function,
generated by ANTLR, associated with the desired start rule. The most basic
rule is just a rule name followed by a single alternative terminated with a
semicolon.

/** Javadoc comment can precede rule */
retstat : 'return' expr ';' ;

Rules can also have alternatives separated by the | operator.

stat: retstat
| 'break' ';'
| 'continue' ';'
;

Alternatives are either a list of rule elements or empty. For example, here’s a
rule with an empty alternative that makes the entire rule optional:

superClass
: 'extends' ID
| // empty means other alternative(s) are optional
;

Alternative Labels

As we saw in Section 7.4, Labeling Rule Alternatives for Precise Event Methods,
on page 117, we can get more precise parse-tree listener events by labeling the
outermost alternatives of a rule using the # operator. All alternatives within
a rule must be labeled, or none of them should be. Here are two rules with
labeled alternatives:

reference/AltLabels.g4
grammar AltLabels;
stat: 'return' e ';' # Return

| 'break' ';' # Break
;

e : e '*' e # Mult
| e '+' e # Add
| INT # Int
;

Alternative labels do not have to be at the end of the line, and there does not
have to be a space after the # symbol.

ANTLR generates a rule context class definition for each label. For example,
here is the listener that ANTLR generates:

report erratum • discuss

Parser Rules • 261

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/AltLabels.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

public interface AltLabelsListener extends ParseTreeListener {
void enterMult(AltLabelsParser.MultContext ctx);
void exitMult(AltLabelsParser.MultContext ctx);
void enterBreak(AltLabelsParser.BreakContext ctx);
void exitBreak(AltLabelsParser.BreakContext ctx);
void enterReturn(AltLabelsParser.ReturnContext ctx);
void exitReturn(AltLabelsParser.ReturnContext ctx);
void enterAdd(AltLabelsParser.AddContext ctx);
void exitAdd(AltLabelsParser.AddContext ctx);
void enterInt(AltLabelsParser.IntContext ctx);
void exitInt(AltLabelsParser.IntContext ctx);

}

There are enter and exit methods associated with each labeled alternative.
The parameters to those methods are specific to alternatives.

You can reuse the same label on multiple alternatives to indicate that the
parse-tree walker should trigger the same event for those alternatives. For
example, here’s a variation on rule e that reuses label BinaryOp:

e : e '*' e # BinaryOp
| e '+' e # BinaryOp
| INT # Int
;

ANTLR would generate the following listener methods for e:

void enterBinaryOp(AltLabelsParser.BinaryOpContext ctx);
void exitBinaryOp(AltLabelsParser.BinaryOpContext ctx);
void enterInt(AltLabelsParser.IntContext ctx);
void exitInt(AltLabelsParser.IntContext ctx);

ANTLR gives errors if an alternative name conflicts with a rule name. Here’s
another rewrite of rule e where two alternative labels conflict with rule names:

reference/Conflict.g4
e : e '*' e # e

| e '+' e # Stat
| INT # Int
;

The context objects generated from rule names and labels get capitalized, so
label Stat conflicts with rule stat.

$ antlr4 Conflict.g4
error(124): Conflict.g4:6:23: rule alt label e conflicts with rule e
error(124): Conflict.g4:7:23: rule alt label Stat conflicts with rule stat
warning(125): Conflict.g4:2:13: implicit definition of token INT in parser

Chapter 15. Grammar Reference • 262

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Conflict.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Rule Context Objects

ANTLR generates methods to access the rule context objects (parse-tree nodes)
associated with each rule reference. For rules with a single rule reference,
ANTLR generates a method with no arguments. Consider the following rule:

inc : e '++' ;

ANTLR generates this context class:

public static class IncContext extends ParserRuleContext {
public EContext e() { ... } // return context object associated with e
...

}

ANTLR also provides support to access context objects when there is more
than a single reference to a rule.

field : e '.' e ;

ANTLR generates a method with an index to access the ith element as well
as a method to get context for all references to that rule.

public static class FieldContext extends ParserRuleContext {
public EContext e(int i) { ... } // get ith e context
public List<EContext> e() { ... } // return ALL e contexts
...

}

If we had another rule, s, that references field, an embedded action could
access the list of e rule matches performed by field.

s : field
{
List<EContext> x = $field.ctx.e();
...

}
;

A listener or visitor could do the same thing. Given a pointer to a FieldContext
object, f, f.e() would return List<EContext>.

Rule Element Labels

You can label rule elements using the = operator to add fields to the rule
context objects.

stat: 'return' value=e ';' # Return
| 'break' ';' # Break
;

Here value is the label for the return value of rule e, which is defined elsewhere.

report erratum • discuss

Parser Rules • 263

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Labels become fields in the appropriate parse-tree node class. In this case,
label value becomes a field in ReturnContext because of the Return alternative label.

public static class ReturnContext extends StatContext {
public EContext value;
...

}

It’s often handy to track a number of tokens, which you can do with the +=
“list label” operator. For example, the following rule creates a list of the Token
objects matched for a simple array construct:

array : '{' el+=INT (',' el+=INT)* '}' ;

ANTLR generates a List field in the appropriate rule context class.

public static class ArrayContext extends ParserRuleContext {
public List<Token> el = new ArrayList<Token>();
...

}

These list labels also work for rule references.

elist : exprs+=e (',' exprs+=e)* ;

ANTLR generates a field holding the list of context objects.

public static class ElistContext extends ParserRuleContext {
public List<EContext> exprs = new ArrayList<EContext>();
...

}

Rule Elements

Rule elements specify what the parser should do at a given moment just like
statements in a programming language. The elements can be a rule, a token,
or a string literal like expression, ID, and 'return'. Here’s a complete list of the rule
elements (we’ll look at actions and predicates in more detail later):

DescriptionSyntax

Match token T at the current input position. Tokens always begin
with a capital letter.

T

Match the string literal at the current input position. A string lit-
eral is simply a token with a fixed string.

’literal ’

Match rule r at the current input position, which amounts to
invoking the rule just like a function call. Parser rule names always
begin with a lowercase letter.

r

Chapter 15. Grammar Reference • 264

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionSyntax

Match rule r at the current input position, passing in a list of
arguments just like a function call. The arguments inside the

r [«args»]

square brackets are in the syntax of the target language and are
usually a comma-separated list of expressions.

Execute an action immediately after the preceding alternative ele-
ment and immediately before the following alternative element.

{«action»}

The action conforms to the syntax of the target language. ANTLR
copies the action code to the generated class verbatim, except for
substituting attribute and token references such as $x and $x.y.
Evaluate semantic predicate «p». Do not continue parsing past a
predicate if «p» evaluates to false at runtime. Predicates encoun-

{«p»}?

tered during prediction, when ANTLR distinguishes between
alternatives, enable or disable the alternative(s) surrounding the
predicate(s).

Match any single token except for the end-of-file token. The “dot”
operator is called the wildcard.

.

When you want to match everything but a particular token or set of tokens,
use the ~ “not” operator. This operator is rarely used in the parser but is
available. ~INT matches any token except the INT token. ~',' matches any token
except the comma. ~(INT|ID) matches any token except an INT or an ID.

Token, string literal, and semantic predicate rule elements can take options.
See Rule Element Options, on page 293.

Subrules

A rule can contain alternative blocks called subrules (as allowed in Extended
BNF Notation [EBNF]). A subrule is like a rule that lacks a name and is
enclosed in parentheses. Subrules can have one or more alternatives inside
the parentheses. Subrules cannot define attributes with locals and returns like
rules can. There are four kinds of subrules (x, y, and z represent grammar
fragments).

(x|y|z)

Match any alternative within the subrule exactly once.
Here’s an example:

returnType : (type | 'void') ;

report erratum • discuss

Parser Rules • 265

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

(x|y|z)?

Match nothing or any alternative within the subrule.
Here’s an example:

classDeclaration
: 'class' ID (typeParameters)? ('extends' type)?

('implements' typeList)?
classBody

;

(x|y|z)*

Match an alternative within the subrule zero or more
times. Here’s an example:

annotationName : ID ('.' ID)* ;

(x|y|z)+

Match an alternative within the subrule one or more
times. Here’s an example:

annotations : (annotation)+ ;

You can suffix the ?, *, and + subrule operators with the nongreedy operator,
which is also a question mark: ??, *?, and +?. See Section 15.6, Wildcard
Operator and Nongreedy Subrules, on page 283.

As a shorthand, you can omit the parentheses for subrules composed of a
single alternative with a single-rule element reference. For example, annotation+
is the same as (annotation)+, and ID+ is the same as (ID)+. Labels also work with
the shorthand. ids+=INT+ make a list of INT token objects.

Catching Exceptions

When a syntax error occurs within a rule, ANTLR catches the exception,
reports the error, attempts to recover (possibly by consuming more tokens),
and then returns from the rule. Every rule is wrapped in a try/catch/finally
statement.

void r() throws RecognitionException {
try {

«rule-body»
}
catch (RecognitionException re) {

_errHandler.reportError(this, re);

Chapter 15. Grammar Reference • 266

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

_errHandler.recover(this, re);
}
finally {

exitRule();
}

}

In Section 9.5, Altering ANTLR's Error Handling Strategy, on page 171, we saw
how to use a strategy object to alter ANTLR’s error handling. Replacing the
strategy changes the strategy for all rules, however. To alter the exception
handling for a single rule, specify an exception after the rule definition.

r : ...
;
catch[RecognitionException e] { throw e; }

That example demonstrates how to avoid default error reporting and recovery.
r rethrows the exception, which is useful when it makes more sense for a
higher-level rule to report the error. Specifying any exception clause prevents
ANTLR from generating a clause to handle RecognitionException.

You can specify other exceptions as well.

r : ...
;
catch[FailedPredicateException fpe] { ... }
catch[RecognitionException e] { ... }

The code snippets inside curly braces and the exception “argument” actions
must be written in the target language, Java, in this case.

When you need to execute an action even if an exception occurs, put it into
the finally clause.

r : ...
;
// catch blocks go first
finally { System.out.println("exit rule r"); }

The finally clause executes right before the rule triggers exitRule() before
returning. If you want to execute an action after the rule finishes matching
the alternatives but before it does its cleanup work, use an after action.

Here’s a complete list of exceptions:

DescriptionException name

The superclass of all exceptions thrown by an ANTLR-
generated recognizer. It’s a subclass of RuntimeException

RecognitionException

to avoid the hassles of checked exceptions. This

report erratum • discuss

Parser Rules • 267

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionException name

exception records where the recognizer (lexer or
parser) was in the input, where it was in the ATN
(internal graph data structure representing the
grammar), the rule invocation stack, and what kind
of problem occurred.

Indicates that the parser could not decide which of
two or more paths to take by looking at the remaining

NoViableAltException

input. This exception tracks the starting token of the
offending input and also knows where the parser was
in the various paths when the error occurred.

The equivalent of NoViableAltException but for lexers only.LexerNoViableAltException
The current input Token does not match what the
parser expected.

InputMismatchException

A semantic predicate that evaluates to false during
prediction renders the surrounding alternative nonvi-

FailedPredicateException

able. Prediction occurs when a rule is predicting
which alternative to take. If all viable paths disappear,
the parser will throw NoViableAltException. This exception
gets thrown by the parser when a semantic predicate
evaluates to false outside of prediction, during the
normal parsing process of matching tokens and call-
ing rules.

Rule Attribute Definitions

There are a number of action-related syntax elements associated with rules
to be aware of. Rules can have arguments, return values, and local variables
just like functions in a programming language. (Rules can have actions
embedded among the rule elements, as we’ll see in Section 15.4, Actions and
Attributes, on page 271.) ANTLR collects all of the variables you define and
stores them in the rule context object. These variables are usually called
attributes. Here’s the general syntax showing all possible attribute definition
locations:

rulename[«args»] returns [«retvals»] locals [«localvars»] : ... ;

The attributes defined within those [...] can be used like any other variable.
Here is a sample rule that copies parameters to return values:

// Return the argument plus the integer value of the INT token
add[int x] returns [int result] : '+=' INT {$result = $x + $INT.int;} ;

Chapter 15. Grammar Reference • 268

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

As with the grammar level, you can specify rule-level named actions. For rules,
the valid names are init and after. As the names imply, parsers execute init actions
immediately before trying to match the associated rule and execute after actions
immediately after matching the rule. ANTLR after actions do not execute as part
of the finally code block of the generated rule function. Use the ANTLR finally action
to place code in the generated rule function finally code block.

The actions come after any argument, return value, or local attribute definition
actions. The row rule preamble from Section 10.2, Accessing Token and Rule
Attributes, on page 182 illustrates the syntax nicely.

actions/CSV.g4
/** Derived from rule "row : field (',' field)* '\r'? '\n' ;" */
row[String[] columns] returns [Map<String,String> values]
locals [int col=0]
@init {

$values = new HashMap<String,String>();
}
@after {

if ($values!=null && $values.size()>0) {
System.out.println("values = "+$values);

}
}

Rule row takes argument columns, returns values, and defines local variable col.
The “actions” in square brackets are copied directly into the generated code.

public class CSVParser extends Parser {
...
public static class RowContext extends ParserRuleContext {

public String[] columns;
public Map<String,String> values;
public int col=0;
...

}
...

}

The generated rule functions also specify the rule arguments as function
arguments, but they are quickly copied into the local RowContext object.

public class CSVParser extends Parser {
...
public final RowContext row(String[] columns) throws RecognitionException {

RowContext _localctx = new RowContext(_ctx, 4, columns);
enterRule(_localctx, RULE_row);
...

}
...

}

report erratum • discuss

Parser Rules • 269

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/actions/CSV.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR tracks nested [...] within the action so that String[] columns is parsed
properly. It also tracks angle brackets so that commas within generic type
parameters do not signify the start of another attribute. Map<String,String> values
is one attribute definition.

There can be multiple attributes in each action, even for return values. Use
a comma to separate attributes within the same action.

a[Map<String,String> x, int y] : ... ;

ANTLR interprets that action to define two arguments, x and y.

public final AContext a(Map<String,String> x, int y)
throws RecognitionException

{
AContext _localctx = new AContext(_ctx, 0, x, y);
enterRule(_localctx, RULE_a);
...

}

Start Rules and EOF

A start rule is the rule engaged first by the parser; it’s the rule function called
by the language application. For example, a language application that parses
Java code might call parser.compilationUnit() on a JavaParser object called parser. Any
rule in the grammar can act as a start rule.

Start rules don’t necessarily consume all of the input. They consume only as
much input as needed to match an alternative of the rule. For example, con-
sider the following rule that matches one, two, or three tokens, depending on
the input:

s : ID
| ID '+'
| ID '+' INT
;

Upon a+3, rule s matches the third alternative. Upon a+b, it matches the second
alternative and ignores the final b token. Upon a b, it matches the first alter-
native, ignoring the b token. The parser does not consume the complete input
in the latter two cases because rule s doesn’t explicitly say that the end of file
must occur after matching an alternative of the rule.

This default functionality is very useful for building things such as IDEs.
Imagine the IDE wanting to parse a method somewhere in the middle of a big
Java file. Calling rule methodDeclaration should try to match just a method and
ignore whatever comes next.

Chapter 15. Grammar Reference • 270

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

On the other hand, rules that describe entire input files should reference
special predefined-token EOF. If they don’t, you might scratch your head for
a while wondering why the start rule doesn’t report errors for any input no
matter what you give it. Here’s a rule that’s part of a grammar for reading
configuration files:

config : element*; // can "match" even with invalid input.

Invalid input would cause config to return immediately without matching any
input and without reporting an error. Here’s the proper specification:

file : element* EOF; // don't stop early. must match all input

15.4 Actions and Attributes

In Chapter 10, Attributes and Actions, on page 175, we learned how to embed
actions within grammars and looked at the most common token and rule
attributes. This section summarizes the important syntax and semantics from
that chapter and provides a complete list of all available attributes.

Actions are blocks of text written in the target language and enclosed in curly
braces. The recognizer triggers them according to their locations within the
grammar. For example, the following rule emits found a decl after the parser
has seen a valid declaration:

decl: type ID ';' {System.out.println("found a decl");} ;
type: 'int' | 'float' ;

Most often, actions access the attributes of tokens and rule references.

decl: type ID ';'
{System.out.println("var "+$ID.text+":"+$type.text+";");}

| t=ID id=ID ';'
{System.out.println("var "+$id.text+":"+$t.text+";");}

;

Token Attributes

All tokens have a collection of predefined, read-only attributes. The attributes
include useful token properties such as the token type and text matched for
a token. Actions can access these attributes via $label .attribute where label
labels a particular instance of a token reference (a and b in the following
example are used in the action code as $a and $b). Often, a particular token
is referenced only once in the rule, in which case the token name itself can
be used unambiguously in the action code (token INT can be used as $INT in
the action). The following example illustrates token attribute expression syntax:

report erratum • discuss

Actions and Attributes • 271

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

r : INT {int x = $INT.line;}
(ID {if ($INT.line == $ID.line) ...;})?
a=FLOAT b=FLOAT {if ($a.line == $b.line) ...;}

;

The action within the (...)? subrule can see the INT token matched before it in
the outer level.

Because there are two references to the FLOAT token, a reference to $FLOAT in
an action is not unique; you must use labels to specify which token reference
you’re interested in.

Token references within different alternatives are unique because only one
of them can be matched for any invocation of the rule. For example, in the
following rule, actions in both alternatives can reference $ID directly without
using a label.

r : ... ID {System.out.println($ID.text);}
| ... ID {System.out.println($ID.text);}
;

To access the tokens matched for literals, you must use a label.

stat: r='return' expr ';' {System.out.println("line="+$r.line);} ;

Most of the time you access the attributes of the token, but sometimes it is
useful to access the Token object itself because it aggregates all the attributes.
Further, you can use it to test whether an optional subrule matched a token.

stat: 'if' expr 'then' stat (el='else' stat)?
{if ($el!=null) System.out.println("found an else");}

| ...
;

$T and $l evaluate to Token objects for token name T and token label l . $ll
evaluates to List<Token> for list label ll . $T .attr evaluates to the type and value
specified in the following table for attribute attr :

DescriptionTypeAttribute

The text matched for the token; translates to a call to getText().
Example: $ID.text.

Stringtext

The token type (nonzero positive integer) of the token such
as INT; translates to a call to getType(). Example: $ID.type.

inttype

The line number on which the token occurs, counting from
1; translates to a call to getLine(). Example: $ID.line.

intline

Chapter 15. Grammar Reference • 272

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionTypeAttribute

The character position within the line at which the token’s
first character occurs counting from zero; translates to a call
to getCharPositionInLine(). Example: $ID.pos.

intpos

The overall index of this token in the token stream, counting
from zero; translates to a call to getTokenIndex(). Example:
$ID.index.

intindex

The token’s channel number. The parser tunes to only one
channel, effectively ignoring off-channel tokens. The default

intchannel

channel is 0 (Token.DEFAULT_CHANNEL), and the default hidden
channel is Token.HIDDEN_CHANNEL. Translates to a call to
getChannel(). Example: $ID.channel.
The integer value of the text held by this token; it assumes
that the text is a valid numeric string. Handy for building

intint

calculators and so on. Translates to Integer.valueOf(text-of-token).
Example: $INT.int.

Parser Rule Attributes

ANTLR predefines a number of read-only attributes associated with parser
rule references that are available to actions. Actions can access rule attributes
only for references that precede the action. The syntax is $r .attr for rule name
r or a label assigned to a rule reference. For example, $expr.text returns the
complete text matched by a preceding invocation of rule expr.

returnStat : 'return' expr {System.out.println("matched "+$expr.text);} ;

Using a rule label looks like this:

returnStat : 'return' e=expr {System.out.println("matched "+$e.text);} ;

You can also use $ followed by the name of the attribute to access the value
associated with the currently executing rule. For example, $start is the starting
token of the current rule.

returnStat : 'return' expr {System.out.println("first token "+$start.getText());} ;

$r and $rl evaluate to ParserRuleContext objects of type RContext for rule name r
and rule label rl . $rll evaluates to List<RContext> for rule list label rll . $r .attr
evaluates to the type and value specified in the following table for attribute
attr :

report erratum • discuss

Actions and Attributes • 273

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionTypeAttribute

The text matched for a rule or the text matched
from the start of the rule up until the point of

Stringtext

the $text expression evaluation. Note that this
includes the text for all tokens including those
on hidden channels, which is what you want
because usually that has all the whitespace and
comments. When referring to the current rule,
this attribute is available in any action including
any exception actions.

The first token to be potentially matched by the
rule that is on the main token channel; in other

Tokenstart

words, this attribute is never a hidden token. For
rules that end up matching no tokens, this
attribute points at the first token that could have
been matched by this rule. When referring to the
current rule, this attribute is available to any
action within the rule.

The last nonhidden channel token to be matched
by the rule. When referring to the current rule,

Tokenstop

this attribute is available only to the after and
finally actions.

The rule context object associated with a rule
invocation. All of the other attributes are avail-

ParserRuleContextctx

able through this attribute. For example, $ctx.start
accesses the start field within the current rules
context object. It’s the same as $start.

Dynamically Scoped Attributes

You can pass information to and from rules using parameters and return
values, just like functions in a general-purpose programming language. Pro-
gramming languages don’t allow functions to access the local variables or
parameters of invoking functions, however.

For example, the following reference to local variable x from a nested method
call is illegal in Java:

void f() {
int x = 0;
g();

}

Chapter 15. Grammar Reference • 274

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

void g() {
h();

}
void h() {

int y = x; // INVALID reference to f's local variable x
}

Variable x is available only within the scope of f(), which is the text lexically
delimited by curly brackets. For this reason, Java is said to use lexical scoping.
Lexical scoping is the norm for most programming languages.2 Languages
that allow methods further down in the call chain to access local variables
defined earlier are said to use dynamic scoping. The term dynamic refers to
the fact that a compiler cannot statically determine the set of visible variables.
This is because the set of variables visible to a method changes depending
on who calls that method.

It turns out that, in the grammar realm, distant rules sometimes need to
communicate with each other, mostly to provide context information to rules
matched below in the rule invocation chain. (Naturally, this assumes you are
using actions directly in the grammar instead of the parse-tree listener event
mechanism.) ANTLR allows dynamic scoping in that actions can access
attributes from invoking rules using syntax $r::x where r is a rule name and
x is an attribute within that rule. It is up to the programmer to ensure that r
is in fact an invoking rule of the current rule. A runtime exception occurs if
r is not in the current call chain when you access $r::x.

To illustrate the use of dynamic scoping, consider the real problem of defining
variables and ensuring that variables in expressions are defined. The following
grammar defines the symbols attribute where it belongs in the block rule but
adds variable names to it in rule decl. Rule stat then consults the list to see
whether variables have been defined.

reference/DynScope.g4
grammar DynScope;

prog: block
;

block
/* List of symbols defined within this block */
locals [

List<String> symbols = new ArrayList<String>()
]

2. See http://en.wikipedia.org/wiki/Scope_(programming)#Static_scoping.

report erratum • discuss

Actions and Attributes • 275

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/DynScope.g4
http://en.wikipedia.org/wiki/Scope_(programming)#Static_scoping
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

: '{' decl* stat+ '}'
// print out all symbols found in block
// $block::symbols evaluates to a List as defined in scope
{System.out.println("symbols="+$symbols);}

;

/** Match a declaration and add identifier name to list of symbols */
decl: 'int' ID {$block::symbols.add($ID.text);} ';'

;

/** Match an assignment then test list of symbols to verify
* that it contains the variable on the left side of the assignment.
* Method contains() is List.contains() because $block::symbols
* is a List.
*/

stat: ID '=' INT ';'
{
if (!$block::symbols.contains($ID.text)) {

System.err.println("undefined variable: "+$ID.text);
}
}

| block
;

ID : [a-z]+ ;
INT : [0-9]+ ;
WS : [\t\r\n]+ -> skip ;

Here’s a simple build and test sequence:

$ antlr4 DynScope.g4➾
$ javac DynScope*.java➾
$ grun DynScope prog➾
{➾

int i;➾
i = 0;➾
j = 3;➾

}➾
EOF➾
undefined variable: j❮
symbols=[i]

There’s an important difference between a simple field declaration in an
@members action and dynamic scoping. symbols is a local variable, so there is
a copy for each invocation of rule block. That’s exactly what we want for nested
blocks so that we can reuse the same input variable name in an inner block.
For example, the following nested code block redefines i in the inner scope.
This new definition must hide the definition in the outer scope.

Chapter 15. Grammar Reference • 276

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

reference/nested-input
{

int i;
int j;
i = 0;
{

int i;
int x;
x = 5;

}
x = 3;

}

Here’s the output generated for that input by DynScope:

$ grun DynScope prog nested-input
symbols=[i, x]
undefined variable: x
symbols=[i, j]

Referencing $block::symbols accesses the symbols field of the most recently invoked
block’s rule context object. If you need access to a symbols instance from a rule
invocation further up the call chain, you can walk backward starting at the
current context, $ctx. Use getParent() to walk up the chain.

15.5 Lexer Rules

A lexer grammar is composed of lexer rules, optionally broken into multiple modes,
as we saw in Issuing Context-Sensitive Tokens with Lexical Modes, on page 221.
Lexical modes allow us to split a single lexer grammar into multiple sublexers.
The lexer can return only those tokens matched by rules from the current mode.

Lexer rules specify token definitions and more or less follow the syntax of
parser rules except that lexer rules cannot have arguments, return values,
or local variables. Lexer rule names must begin with an uppercase letter,
which distinguishes them from parser rule names.

/** Optional document comment */
TokenName : «alternative1» | ... | «alternativeN» ;

You can also define rules that are not tokens but rather aid in the recognition
of tokens. These fragment rules do not result in tokens visible to the parser.

fragment HelperTokenRule : «alternative1» | ... | «alternativeN» ;

For example, DIGIT is a pretty common fragment rule.

INT : DIGIT+ ; // references the DIGIT helper rule
fragment DIGIT : [0-9] ; // not a token by itself

report erratum • discuss

Lexer Rules • 277

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/nested-input
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Lexical Modes

Modes allow you to group lexical rules by context, such as inside and outside
of XML tags. It’s like having multiple sublexers, with one for context. The
lexer can return only those tokens matched by entering a rule in the current
mode. Lexers start out in the so-called default mode. All rules are considered
to be within the default mode unless you specify a mode command. Modes are
not allowed within combined grammars, just lexer grammars. (See grammar
XMLLexer from Tokenizing XML, on page 226.)

«rules in default mode»
...
mode MODE1;
«rules in MODE1»
...
mode MODEN;
«rules in MODEN»
...

Lexer Rule Elements

Lexer rules allow two constructs that are unavailable to parser rules: the ..
range operator and the character set notation enclosed in square brackets,
[characters]. Don’t confuse character sets with arguments to parser rules.
[characters] only means character set in a lexer. Here’s a summary of all
lexer rule elements:

DescriptionSyntax

Match that character or sequence of characters. Here’s an example:
'while' or '='.

’literal ’

Match one of the characters specified in the character set. Interpret
x-y as a set of characters between range x and y , inclusively. The

[char set]

following escaped characters are interpreted as single special
characters: \n, \r, \b, \t, and \f. To get], \, or -, you must escape them
with \. You can also use Unicode character specifications: \uXXXX.
Here are a few examples:

WS : [\n\u000D] -> skip ; // same as [\n\r]
ID : [a-zA-Z] [a-zA-Z0-9]* ; // match usual identifier spec
DASHBRACK : [\-\]]+ ; // match - or] one or more times

Match any single character between range x and y , inclusively.
Here’s an example: 'a'..'z'. 'a'..'z' is identical to [a-z].

’x ’..’y ’

Invoke lexer rule T ; recursion is allowed in general but not left
recursion. T can be a regular token or fragment rule.

T

Chapter 15. Grammar Reference • 278

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DescriptionSyntax

ID : LETTER (LETTER|'0'..'9')* ;
fragment
LETTER : [a-zA-Z\u0080-\u00FF_] ;

The dot is a single-character wildcard that matches any single
character. Here’s an example:

.

ESC : '\\' . ; // match any escaped \x character

Lexer actions must appear at the end of the outermost alternative.
If a lexer rule has more than one alternative, enclose them in
parentheses and put the action afterward.

{«action»}

END : ('endif'|'end') {System.out.println("found an end");} ;

The action conforms to the syntax of the target language. ANTLR
copies the action’s contents into the generated code verbatim; there
is no translation of expressions such as $x.y like there is in parser
actions.

Evaluate semantic predicate «p». If «p» evaluates to false at runtime,
the surrounding rule becomes “invisible” (nonviable). Expression

{«p»}?

«p» conforms to the target language syntax. While semantic predi-
cates can appear anywhere within a lexer rule, it is most efficient
to have them at the end of the rule. The one caveat is that
semantic predicates must precede lexer actions. See Predicates in
Lexer Rules, on page 290.

Match any single character not in the set described by x . Set x
can be a single character literal, a range, or a subrule set like

~x

~('x'|'y'|'z') or ~[xyz]. Here is a rule that uses ~ to match any character
other than characters using ~[\r\n]*:

COMMENT : '#' ~[\r\n]* '\r'? '\n' -> skip ;

Just as with parser rules, lexer rules allow subrules in parentheses and EBNF
operators: ?, *, +. The COMMENT rule illustrates the * and ? operators. A common
use of + is [0-9]+ to match integers. Lexer subrules can also use the nongreedy
? suffix on those EBNF operators.

Recursive Lexer Rules

ANTLR lexer rules can be recursive, unlike most lexical grammar tools. This
comes in handy when you want to match nested tokens like nested action
blocks: {...{...}...}.

report erratum • discuss

Lexer Rules • 279

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

reference/Recur.g4
lexer grammar Recur;

ACTION : '{' (ACTION | ~[{}])* '}' ;

WS : [\r\t\n]+ -> skip ;

Redundant String Literals

Be careful that you don’t specify the same string literal on the right side of
multiple lexer rules. Such literals are ambiguous and could match multiple
token types. ANTLR makes this literal unavailable to the parser. The same is
true for rules across modes. For example, the following lexer grammar defines
two tokens with the same character sequence:

reference/L.g4
lexer grammar L;
AND : '&' ;
mode STR;
MASK : '&' ;

A parser grammar cannot reference literal '&', but it can reference the name
of the tokens.

reference/P.g4
parser grammar P;
options { tokenVocab=L; }
a : '&' // results in a tool error: no such token

AND // no problem
MASK // no problem

;

Here’s a build and test sequence:

$ antlr4 L.g4 # yields L.tokens file needed by tokenVocab option in P.g4➾
$ antlr4 P.g4➾
error(126): P.g4:3:4: cannot create implicit token for string literal '&'❮

in non-combined grammar

Lexer Rule Actions

An ANTLR lexer creates a Token object after matching a lexical rule. Each
request for a token starts in Lexer.nextToken(), which calls emit() once it has
identified a token. emit() collects information from the current state of the
lexer to build the token. It accesses fields _type, _text, _channel, _tokenStartCharIndex,
_tokenStartLine, and _tokenStartCharPositionInLine. You can set the state of these with
the various setter methods such as setType(). For example, the following rule
turns enum into an identifier if enumIsKeyword is false:

ENUM : 'enum' {if (!enumIsKeyword) setType(Identifier);} ;

Chapter 15. Grammar Reference • 280

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Recur.g4
http://media.pragprog.com/titles/tpantlr2/code/reference/L.g4
http://media.pragprog.com/titles/tpantlr2/code/reference/P.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR does no special $x attribute translations in lexer actions (unlike v3).

There can be at most a single action for a lexical rule, regardless of how many
alternatives there are in that rule.

Lexer Commands

To avoid tying a grammar to a particular target language, ANTLR supports
lexer commands. Unlike arbitrary embedded actions, these commands follow
specific syntax and are limited to a few common commands. Lexer commands
appear at the end of the outermost alternative of a lexer rule definition. Like
arbitrary actions, there can be only one per token rule. A lexer command
consists of the -> operator followed by one or more command names that can
optionally take parameters.

TokenName : «alternative» -> command-name

TokenName : «alternative» -> command-name («identifier or integer»)
An alternative can have more than one command separated by commas. Here
are the valid command names:

skip Do not return a token to the parser for this rule. This is typically used
for whitespace:

WS : [\r\t\n]+ -> skip ;

more Match this rule but continue looking for a token. The token rule that
matches next will include the text matched for this rule. This is typically
used with modes. Here’s an example that matches string literals with a
mode:

reference/Strings.g4
lexer grammar Strings;
LQUOTE : '"' -> more, mode(STR) ;
WS : [\r\t\n]+ -> skip ;

mode STR;

STRING : '"' -> mode(DEFAULT_MODE) ; // token we want parser to see
TEXT : . -> more ; // collect more text for string

Here’s a sample run:

$ antlr4 Strings.g4➾
$ javac Strings.java➾
$ grun Strings tokens -tokens➾
"hi"➾
"mom"➾
EOF➾

report erratum • discuss

Lexer Rules • 281

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Strings.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

[@0,0:3='"hi"',<2>,1:0]❮
[@1,5:9='"mom"',<2>,2:0]
[@2,11:10='<EOF>',<-1>,3:0]

type(T) Set the token type for the current token. Here’s an example that forces
two different tokens to use the same token type:

reference/SetType.g4
lexer grammar SetType;

tokens { STRING }

DOUBLE : '"' .*? '"' -> type(STRING) ;
SINGLE : '\'' .*? '\'' -> type(STRING) ;
WS : [\r\t\n]+ -> skip ;

Here’s a sample run. You can see that both tokens come back as token
type 1.

$ antlr4 SetType.g4➾
$ javac SetType.java➾
$ grun SetType tokens -tokens➾
"double"➾
'single'➾
EOF➾
[@0,0:7='"double"',<1>,1:0]❮
[@1,9:16=''single'',<1>,2:0]
[@2,18:17='<EOF>',<-1>,3:0]

channel(C) Set the channel for the current token. The default is
Token.DEFAULT_CHANNEL. You can define constants and then use it or an
integer literal above Token.DEFAULT_CHANNEL in value (0). There’s a generic
hidden channel called Token.HIDDEN_CHANNEL with value 1.

@lexer::members { public static final int WHITESPACE = 1; }
...
WS : [\t\n\r]+ -> channel(WHITESPACE) ;

mode(M) After matching this token, switch the lexer to mode M . The next
time the lexer tries to match a token, it will look only at rules in mode M .
M can be a mode name from the same grammar or an integer literal. See
grammar Strings earlier.

pushMode(M) This is the same as mode except that it pushes the current mode
onto a stack as well as setting the mode M . It should be used in conjunc-
tion with popMode.

popMode Pop a mode from the top of the mode stack and set the current mode
of the lexer to that. This is used in conjunction with pushMode.

Chapter 15. Grammar Reference • 282

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/SetType.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

15.6 Wildcard Operator and Nongreedy Subrules

EBNF subrules like (...)?, (...)*, and (...)+ are greedy—they consume as much
input as possible, but sometimes that’s not what’s needed. Constructs like
.* consume until the end of the input in the lexer and sometimes in the
parser. We want that loop to be nongreedy, so we need to use different syntax:
.*? borrowed from regular expression notation. We can make any subrule that
has a ?, *, or + suffix nongreedy by adding another ? suffix. Such nongreedy
subrules are allowed in both the parser and the lexer, but they are used much
more frequently in the lexer.

Nongreedy Lexer Subrules

Here’s the very common C-style comment lexer rule that consumes any
characters until it sees the trailing '*/':

COMMENT : '/*' .*? '*/' -> skip ; // .*? matches anything until the first */

Here’s another example that matches strings that allow \" as an escaped quote
character:

reference/Nongreedy.g4
grammar Nongreedy;
s : STRING+ ;
STRING : '"' ('\\"' | .)*? '"' ; // match "foo", "\"", "x\"\"y", ...
WS : [\r\t\n]+ -> skip ;

$ antlr4 Nongreedy.g4➾
$ javac Nongreedy*.java➾
$ grun Nongreedy s -tokens➾
"quote:\""➾
EOF➾
[@0,0:9='"quote:\""',<1>,1:0]❮
[@1,11:10='<EOF>',<-1>,2:0]

Nongreedy subrules should be used sparingly because they complicate the
recognition problem and sometimes make it tricky to decipher how the lexer
will match text. Here is how the lexer chooses token rules:

• The primary goal is to match the lexer rule that recognizes the most input
characters.

INT : [0-9]+ ;
DOT : '.' ; // match period
FLOAT : [0-9]+ '.' ; // match FLOAT upon '34.' not INT then DOT

• If more than one lexer rule matches the same input sequence, the priority
goes to the rule occurring first in the grammar file.

report erratum • discuss

Wildcard Operator and Nongreedy Subrules • 283

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Nongreedy.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

DOC : '/**' .*? '*/' ; // both rules match /** foo */, resolve to DOC
CMT : '/*' .*? '*/' ;

• Nongreedy subrules match the fewest characters that still allow the sur-
rounding lexical rule to match.

/** Match anything except \n inside of double angle brackets */
STRING : '<<' ~'\n'*? '>>' ; // Input '<<foo>>>>' matches STRING then END
END : '>>' ;

• After crossing through a nongreedy subrule within a lexical rule, all
decision making from then on is “first match wins.”

For example, alternative 'ab' in the rule right-side .*? ('a'|'ab') is dead code
and can never be matched. If the input is ab, the first alternative, 'a',
matches the first character and therefore succeeds. ('a'|'ab') by itself on
the right side of a rule properly matches the second alternative for input
ab. This quirk arises from a nongreedy design decision that’s too compli-
cated to go into here.

To illustrate the different ways to use loops within lexer rules, consider the
following grammar, which has three different action-like tokens (using different
delimiters so that they all fit within one example grammar):

reference/Actions.g4
ACTION1 : '{' (STRING | .)*? '}' ; // Allows {"foo}
ACTION2 : '[' (STRING | ~'"')*? ']' ; // Doesn't allow ["foo]; nongreedy *?
ACTION3 : '<' (STRING | ~[">])* '>' ; // Doesn't allow <"foo>; greedy *
STRING : '"' ('\\"' | .)*? '"' ;

Rule ACTION1 allows unterminated strings, such as {"foo}, because input "foo
matches to the wildcard part of the loop. It doesn’t have to go into rule STRING
to match a quote. To fix that, rule ACTION2 uses ~'"' to match any character
but the quote. Expression ~'"' is still ambiguous with the ']' that ends the rule,
but the fact that the subrule is nongreedy means that the lexer will exit the
loop upon a right square bracket. To avoid a nongreedy subrule, make the
alternatives explicit. Expression ~[">] matches anything but the quote and
right angle bracket. Here’s a sample run:

$ antlr4 Actions.g4➾
$ javac Actions*.java➾
$ grun Actions tokens -tokens➾
{"foo}➾
EOF➾
[@0,0:5='{"foo}',<1>,1:0]❮
[@1,7:6='<EOF>',<-1>,2:0]
$ grun Actions tokens -tokens➾
["foo]➾

Chapter 15. Grammar Reference • 284

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Actions.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

EOF➾
line 1:0 token recognition error at: '["foo]\n'❮
[@0,7:6='<EOF>',<-1>,2:0]
$ grun Actions tokens -tokens➾
<"foo>➾
EOF➾
line 1:0 token recognition error at: '<"foo>\n'❮
[@0,7:6='<EOF>',<-1>,2:0]

Nongreedy Parser Subrules

Nongreedy subrules and wildcards are also useful within parsers to do “fuzzy
parsing” where the goal is to extract information from an input file without
having to specify the full grammar. In contrast to nongreedy lexer decision
making, parsers always make globally correct decisions. A parser never makes
a decision that will ultimately cause valid input to fail later during the parse.
Here is the central idea: nongreedy parser subrules match the shortest sequence
of tokens that preserves a successful parse for a valid input sentence.

For example, here are the key rules that demonstrate how to pull integer
constants out of an arbitrary Java file:

reference/FuzzyJava.g4
grammar FuzzyJava;
/** Match anything in between constant rule matches */
file : .*? (constant .*?)+ ;

/** Faster alternate version (Gets an ANTLR tool warning about
* a subrule like .* in parser that you can ignore.)
*/

altfile : (constant | .)* ; // match a constant or any token, 0-or-more times

/** Match things like "public static final SIZE" followed by anything */
constant

: 'public' 'static' 'final' 'int' Identifier
{System.out.println("constant: "+$Identifier.text);}

;
Identifier : [a-zA-Z_$] [a-zA-Z_$0-9]* ; // simplified

The grammar contains a greatly simplified set of lexer rules from a real Java
lexer; the whole file about 60 lines. The recognizer still needs to handle string
and character constants as well as comments so it doesn’t get out of sync,
trying to match a constant inside of the string, for example. The only
unusual lexer rule performs the “match any character not matched by
another lexer rule” functionality.

reference/FuzzyJava.g4
OTHER : . -> skip ;

report erratum • discuss

Wildcard Operator and Nongreedy Subrules • 285

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/FuzzyJava.g4
http://media.pragprog.com/titles/tpantlr2/code/reference/FuzzyJava.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

This catchall lexer rule and the .*? subrule in the parser are the critical
ingredients for fuzzy parsing.

Here’s a sample file that we can run into the fuzzy parser:

reference/C.java
import java.util.*;
public class C {

public static final int A = 1;
public static final int B = 1;
public void foo() { }
public static final int C = 1;

}

And here’s the build and test sequence:

$ antlr4 FuzzyJava.g4
$ javac FuzzyJava*.java
$ grun FuzzyJava file C.java
constant: A
constant: B
constant: C

Notice that it totally ignores everything except for the public static final int decla-
rations. This all happens with only two parser rules.

15.7 Semantic Predicates

Semantic predicates, {...}?, are Boolean expressions written in the target lan-
guage that indicate the validity of continuing the parse along the path
“guarded” by the predicate. Predicates can appear anywhere within a parser
rule just like actions can, but only those appearing on the left edge of alterna-
tives can affect prediction (choosing between alternatives). We discussed
predicates in detail in Chapter 11, Altering the Parse with Semantic Predicates,
on page 189. This section provides all of the fine print regarding the use of
semantic predicates in parser and lexer rules. Let’s start by digging deeper
into how the parser incorporates predicates into parsing decisions.

Making Predicated Parsing Decisions

ANTLR’s general decision-making strategy is to find all viable alternatives and
then ignore the alternatives guarded with predicates that currently evaluate
to false. (A viable alternative is one that matches the current input.) If more
than one viable alternative remains, the parser chooses the alternative spec-
ified first in the decision.

Chapter 15. Grammar Reference • 286

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/C.java
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Consider a variant of C++ where array references also use parentheses instead
of square brackets. If we predicate only one of the alternatives, we still have
an ambiguous decision in expr.

expr: ID '(' expr ')' // array reference (ANTLR picks this one)
| {istype()}? ID '(' expr ')' // ctor-style typecast
| ID '(' expr ')' // function call
;

In this case, all three alternatives are viable for input x(i). When x is not a type
name, the predicate evaluates to false, leaving only the first and third alternatives
as possible matches for expr. ANTLR automatically chooses the first alternative
matching the array reference to resolve the ambiguity. Leaving ANTLR with more
than one viable alternative because of too few predicates is probably not a good
idea. It’s best to cover n viable alternatives with at least n-1 predicates. In other
words, don’t build rules like expr with too few predicates.

Sometimes, the parser finds multiple visible predicates associated with a
single choice. No worries. ANTLR just combines the predicates with appropriate
logical operators to conjure up a single meta-predicate on-the-fly.

For example, the decision in rule stat joins the predicates from both alternatives
of expr with the || operator to guard the second stat alternative.

stat: decl | expr ;
decl: ID ID ;
expr: {istype()}? ID '(' expr ')' // ctor-style typecast

| {isfunc()}? ID '(' expr ')' // function call
;

The parser will predict an expr from stat only when istype()||isfunc() evaluates to
true. This makes sense because the parser should choose to match an
expression only if the upcoming ID is a type name or function name. It wouldn’t
make sense to test just one of the predicates in this case. Note that when the
parser gets to expr itself, the parsing decision tests the predicates individually,
one for each alternative.

If multiple predicates occur in a sequence, the parser joins them with the &&
operator. For example, consider changing stat to include a predicate before
the call to expr.

stat: decl | {java5}? expr ;

In this case, the parser would predict the second alternative only if
java5&&(istype()||isfunc()) evaluated to true.

Turning to the code inside the predicates themselves now, keep in mind the
following guidelines:

report erratum • discuss

Semantic Predicates • 287

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Use meaningful predicates.
ANTLR assumes that your predicates actually resolve the ambiguity. For
example, ANTLR has no idea that the following predicates don’t meaning-
fully resolve the ambiguity between the two alternatives:

expr: {isTuesday()}? ID '(' expr ')' // ctor-style typecast
| {isHotOutside}? ID '(' expr ')' // function call
;

Predicates must be free from side effects. ANTLR assumes that it can evaluate
your predicates out of order or even multiple times, so don’t use predicates
like {$i++ < 10}?. It’s almost certain that such predicates won’t behave like
you want.

Even when the parser isn’t making decisions, predicates can deactivate
alternatives, causing rules to fail. This happens when a rule has only a single
alternative. There is no choice to make, but ANTLR evaluates the predicate
as part of the normal parsing process, just like it does for actions. That means
the following rule always fails to match:

prog: {false}? 'return' INT ; // throws FailedPredicateException

ANTLR converts {false}? in the grammar to a conditional in the generated
parser.

if (!false) throw new FailedPredicateException(...);

So far, all of the predicates we’ve seen have been visible and available to the
prediction process, but that’s not always the case.

Finding Visible Predicates

The parser will not evaluate predicates during prediction that occur after an
action or token reference. Let’s think about the relationship between actions
and predicates first.

ANTLR has no idea what’s inside the raw code of an action, so it must assume
any predicate could depend on side effects of that action. Imagine an action
that computed value x and a predicate that tested x. Evaluating that predicate
before the action executed to create x would violate the implied order of
operations within the grammar.

More importantly, the parser can’t execute actions until it has decided which
alternative to match. That’s because actions have side effects and we can’t
undo things like print statements. For example, in the following rule, the
parser can’t execute the action in front of the {java5}? predicate before commit-
ting to that alternative:

Chapter 15. Grammar Reference • 288

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

@members {boolean allowgoto=false;}
stat: {System.out.println("goto"); allowgoto=true;} {java5}? 'goto' ID ';'

| ...
;

If we can’t execute the action during prediction, we shouldn’t evaluate the
{java5}? predicate because it depends on that action.

The prediction process also can’t see through token references. Token refer-
ences have the side effect of advancing the input one symbol. A predicate that
tested the current input symbol would find itself out of sync if the parser
shifted it over the token reference. For example, in the following grammar,
the predicates expect getCurrentToken() to return an ID token:

stat: '{' decl '}'
| '{' stat '}'
;

decl: {istype(getCurrentToken().getText())}? ID ID ';' ;
expr: {isvar(getCurrentToken().getText())}? ID ;

The decision in stat can’t test those predicates because, at the start of stat, the
current token is a left curly. To preserve the semantics, ANTLR won’t test the
predicates in that decision.

Visible predicates are those that prediction encounters before encountering
an action or token. The prediction process ignores nonvisible predicates,
treating them as if they don’t exist.

In rare cases, the parser won’t be able to use a predicate, even if it’s visible
to a particular decision. That brings us to our next fine print topic.

Using Context-Dependent Predicates

A predicate that depends on a parameter or local variable of the surrounding
rule is considered a context-dependent predicate. Clearly, we can evaluate
such predicates only within the rules in which they’re defined. For example,
it makes no sense for the decision in the following prog to test the context-
dependent predicate {$i<=5}?. That $i local variable is not even defined in prog.

prog: vec5
| ...
;

vec5
locals [int i=1]

: ({$i<=5}? INT {$i++;})* // match 5 INTs
;

report erratum • discuss

Semantic Predicates • 289

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

ANTLR ignores context-dependent predicates that it can’t evaluate in the
proper context. Normally the proper context is simply the rule defining the
predicate, but sometimes the parser can’t even evaluate a context-dependent
predicate from within the same rule! Detecting these cases is done on-the-fly
at runtime during adaptive LL(*) prediction.

For example, prediction for the optional branch of the else subrule in stat here
“falls off” the end of stat and continues looking for symbols in the invoking
prog rule:

prog: stat+ ; // stat can follow stat
stat
locals [int i=0]

: {$i==0}? 'if' expr 'then' stat {$i=5;} ('else' stat)?
| 'break' ';'
;

The prediction process is trying to figure out what can follow an if statement
other than an else clause. Since the input can have multiple stats in a row,
the prediction for the optional branch of the else subrule reenters stat. This
time, of course, it gets a new copy of $i with a value of 0, not 5. ANTLR ignores
context-dependent predicate {$i==0}? because it knows that the parser isn’t
in the original stat call. The predicate would test a different version of $i, so
the parser can’t evaluate it.

The fine print for predicates in the lexer more or less follows these same
guidelines, except of course lexer rules can’t have parameters and local vari-
ables. Let’s look at all of the lexer-specific guidelines in the next section.

Predicates in Lexer Rules

In parser rules, predicates must appear on the left edge of alternatives to aid
in alternative prediction. Lexers, on the other hand, prefer predicates on the
right edge of lexer rules because they choose rules after seeing a token’s entire
text. Predicates in lexer rules can technically be anywhere within the rule.
Some positions might be more or less efficient than others; ANTLR makes no
guarantees about the optimal spot. A predicate in a lexer rule might be
executed multiple times even during a single token match. You can embed
multiple predicates per lexer rule, and they are evaluated as the lexer reaches
them during matching.

Loosely speaking, the lexer’s goal is to choose the rule that matches the most
input characters. At each character, the lexer decides which rules are still
viable. Eventually, only a single rule will be still viable. At that point, the
lexer creates a token object according the rule’s token type and matched text.

Chapter 15. Grammar Reference • 290

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Sometimes the lexer is faced with more than a single viable matching rule.
For example, input enum would match an ENUM rule and an ID rule. If the next
character after enum is a space, neither rule can continue. The lexer resolves
the ambiguity by choosing the viable rule specified first in the grammar. That’s
why we have to place keyword rules before an identifier rule like this:

ENUM : 'enum' ;
ID : [a-z]+ ;

If, on the other hand, the next character after input enum is a letter, then only
ID is viable.

Predicates come into play by pruning the set of viable lexer rules. When the
lexer encounters a false predicate, it deactivates that rule just like parsers
deactivate alternatives with false predicates.

Like parser predicates, lexer predicates can’t depend on side effects from
lexer actions. That’s because actions can execute only after the lexer positively
identifies the rule to match. Since predicates are part of the rule selection
process, they can’t rely on action side effects. Lexer actions must appear after
predicates in lexer rules. As an example, here’s another way to match enum
as a keyword in the lexer:

reference/Enum3.g4
ENUM: [a-z]+ {getText().equals("enum")}?

{System.out.println("enum!");}
;

ID : [a-z]+ {System.out.println("ID "+getText());} ;

The print action in ENUM appears last and executes only if the current input
matches [a-z]+ and the predicate is true. Let’s build and test Enum3 to see
whether it distinguishes between enum and an identifier.

$ antlr4 Enum3.g4➾
$ javac Enum3.java➾
$ grun Enum3 tokens➾
enum abc➾
EOF➾
enum!❮
ID abc

That works great, but it’s really just for instructional purposes. It’s easier to
understand and more efficient to match enum keywords with a simple rule
like this:

ENUM : 'enum' ;

report erratum • discuss

Semantic Predicates • 291

www.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/Enum3.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

15.8 Options

You can specify a number of options at the grammar and rule element levels.
(There are currently no rule options.) These change how ANTLR generates
code from your grammar. The general syntax is as follows:

options { name1=value1; ... nameN=valueN; } // ANTLR not target language syntax

where a value can be an identifier, a qualified identifier (for example, a.b.c), a
string, a multiline string in curly braces {...}, and an integer.

Grammar Options

All grammars can use the following options. In combined grammars, all options
except language pertain only to the generated parser. Options may be set either
within the grammar file using the options syntax (described earlier) or when
invoking ANTLR on the command line, using the -D option (see Section 15.9,
ANTLR Tool Command-Line Options, on page 294.) The following examples
demonstrate both mechanisms; note that -D overrides options within the
grammar:

superClass Set the superclass of the generated parser or lexer. For combined
grammars, it sets the superclass of the parser.

$ cat Hi.g4
grammar Hi;
a : 'hi' ;
$ antlr4 -DsuperClass=XX Hi.g4
$ grep 'public class' HiParser.java
public class HiParser extends XX {
$ grep 'public class' HiLexer.java
public class HiLexer extends Lexer {

language Generate code in the indicated language, if ANTLR is able to do so.
Otherwise, you will see an error message like this:

$ antlr4 -Dlanguage=C MyGrammar.g4
error(31): ANTLR cannot generate C code as of version 4.0

tokenVocab ANTLR assigns token type numbers to the tokens as it encounters
them in a file. To use different token type values, such as with a separate
lexer, use this option to have ANTLR pull in the .tokens file. ANTLR gener-
ates a .tokens file from each grammar.

$ cat SomeLexer.g4
lexer grammar SomeLexer;
ID : [a-z]+ ;
$ cat R.g4
parser grammar R;

Chapter 15. Grammar Reference • 292

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

options {tokenVocab=SomeLexer;}
tokens {A,B,C} // normally, these would be token types 1, 2, 3
a : ID ;
$ antlr4 SomeLexer.g4
$ cat SomeLexer.tokens
ID=1
$ antlr4 R.g4
$ cat R.tokens
A=2
B=3
C=4
ID=1

TokenLabelType ANTLR normally uses type Token when it generates variables
referencing tokens. If you have passed a TokenFactory to your parser and
lexer so that they create custom tokens, you should set this option to
your specific type. This ensures that the context objects know your type
for fields and method return values.

$ cat T2.g4
grammar T2;
options {TokenLabelType=MyToken;}
a : x=ID ;
$ antlr4 T2.g4
$ grep MyToken T2Parser.java

public MyToken x;

Rule Options

There are currently no valid rule-level options, but the tool still supports the
following syntax for future use:

rulename
options {...}

: ...
;

Rule Element Options

Token options have the form T<name=value>, as we saw in Section 5.4, Dealing
with Precedence, Left Recursion, and Associativity, on page 69. The only token
option is assoc, and it accepts values left and right. Figure 13, A sample grammar,
on page 294 shows a sample grammar with a left-recursive expression rule that
specifies a token option on the '^' exponent operator token.

Semantic predicates also accept an option, per Catching Failed Semantic
Predicates, on page 166. The only valid option is the fail option, which takes
either a string literal in double quotes or an action that evaluates to a string.

report erratum • discuss

Options • 293

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

reference/ExprLR.g4
grammar ExprLR;

expr : expr '^'<assoc=right> expr
| expr '*' expr // match subexpressions joined with '*' operator
| expr '+' expr // match subexpressions joined with '+' operator
| INT // matches simple integer atom
;

INT : '0'..'9'+ ;
WS : [\n]+ -> skip ;

Figure 13—A sample grammar

The string literal or string result from the action should be the message to
emit upon predicate failure.

errors/VecMsg.g4
ints[int max]
locals [int i=1]

: INT (',' {$i++;} {$i<=$max}?<fail={"exceeded max "+$max}> INT)*
;

The action can execute a function as well as compute a string when a predicate
fails: {...}?<fail={doSomethingAndReturnAString()}>.

15.9 ANTLR Tool Command-Line Options

If you invoke the ANTLR tool without command-line arguments, you’ll get a
help message.

$ antlr4
ANTLR Parser Generator Version 4.0
-o ___ specify output directory where all output is generated
-lib ___ specify location of grammars, tokens files
-atn generate rule augmented transition network diagrams
-encoding ___ specify grammar file encoding; e.g., euc-jp
-message-format ___ specify output style for messages in antlr, gnu, vs2005
-listener generate parse tree listener (default)
-no-listener don't generate parse tree listener
-visitor generate parse tree visitor
-no-visitor don't generate parse tree visitor (default)
-package ___ specify a package/namespace for the generated code
-depend generate file dependencies
-D<option>=value set/override a grammar-level option
-Werror treat warnings as errors
-XdbgST launch StringTemplate visualizer on generated code
-Xforce-atn use the ATN simulator for all predictions
-Xlog dump lots of logging info to antlr-timestamp.log

Chapter 15. Grammar Reference • 294

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/tpantlr2/code/reference/ExprLR.g4
http://media.pragprog.com/titles/tpantlr2/code/errors/VecMsg.g4
http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Here are more details on the options:

-o outdir
ANTLR generates output files in the current directory by default. This
option specifies the output directory where ANTLR should generate parsers,
listeners, visitors, and .tokens files.

$ antlr4 -o /tmp T.g4
$ ls /tmp/T*
/tmp/T.tokens /tmp/TListener.java
/tmp/TBaseListener.java /tmp/TParser.java

-lib libdir
When looking for .tokens files and imported grammars, ANTLR normally
looks in the current directory. This option specifies which directory to
look in instead.

$ cat /tmp/B.g4
parser grammar B;
x : ID ;
$ cat A.g4
grammar A;
import B;
s : x ;
ID : [a-z]+ ;
$ antlr4 -lib /tmp A.g4

-atn
This generates DOT graph files that represent the internal augmented
transition network (ATN) data structures that ANTLR uses to represent
grammars. The files come out as Grammar.rule.dot. If the grammar is a
combined grammar, the lexer rules are named GrammarLexer.rule.dot.

$ cat A.g4
grammar A;
s : b ;
b : ID ;
ID : [a-z]+ ;
$ antlr4 -atn A.g4
$ ls *.dot
A.b.dot A.s.dot ALexer.ID.dot

-encoding encodingname
By default ANTLR loads grammar files using the UTF-8 encoding, which
is a very common character file encoding that degenerates to ASCII for
characters that fit in one byte. There are many character file encodings
from around the world. If that grammar file is not the default encoding
for your locale, you need this option so that ANTLR can properly interpret

report erratum • discuss

ANTLR Tool Command-Line Options • 295

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

grammar files (such as the one below). This does not affect the input to
the generated parsers, just the encoding of the grammars themselves.

my locale is en_US on a Mac OS X box
I saved this �le with a UTF-8 encoding to handle grammar name 外 (\uCDE2)

inside the grammar �le
$ cat 外.g4

grammar 外;

a : 'foreign' ;
$ antlr4 -encoding UTF-8 外.g4

$ ls 外*.java

外BaseListener.java 外Listener.java

外Lexer.java 外Parser.java

$ javac -encoding UTF-8 外*.java

-message-format format
ANTLR generates warning and error messages using templates from direc-
tory tool/resources/org/antlr/v4/tool/templates/messages/formats. By default, ANTLR
uses the antlr.stg (StringTemplate group) file. You can change this to gnu
or vs2005 to have ANTLR generate messages appropriate for Emacs or
Visual Studio. To make your own called X , create resource org/antlr/v4/tool/
templates/messages/formats/X and place it in the CLASSPATH.

-listener
This option tells ANTLR to generate a parse-tree listener and is the default.

-no-listener
This option tells ANTLR not to generate a parse-tree listener.

-visitor
ANTLR does not generate parse-tree visitors by default. This option turns
that feature on. ANTLR can generate both parse-tree listeners and visitors;
this option and -listener aren’t mutually exclusive.

-no-visitor
Tell ANTLR not to generate a parse-tree visitor; this is the default.

-package
Use this option to specify a package or namespace for ANTLR-generated
files. Alternatively, you can add an @header {...} action, but that ties the
grammar to a specific language. If you use this option and @header, make
sure that the header action does not contain a package specification;
otherwise, the generated code will have two of them.

Chapter 15. Grammar Reference • 296

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

-depend
Instead of generating a parser and/or lexer, generate a list of file depen-
dencies, one per line. The output shows what each grammar depends on
and what it generates. This is useful for build tools that need to know
ANTLR grammar dependencies. Here’s an example:

$ antlr4 -depend T.g
T.g: A.tokens
TParser.java : T.g
T.tokens : T.g
TLexer.java : T.g
TListener.java : T.g
TBaseListener.java : T.g

If you use -lib libdir with -depend and grammar option tokenVocab=A, then the
dependencies include the library path as well: T.g: libdir/A.tokens. The output
is also sensitive to the -o outdir option: outdir/TParser.java : T.g.

-D<option>=value
Use this option to override or set a grammar-level option in the specified
grammar or grammars. This option is useful for generating parsers in
different languages without altering the grammar. (I expect to have other
targets in the near future.)

$ antlr4 -Dlanguage=Java T.g4 # default
$ antlr4 -Dlanguage=C T.g4
error(31): ANTLR cannot generate C code as of version 4.0

-Werror
As part of a large build, ANTLR warning messages could go unnoticed.
Turn on this option to have warnings treated as errors, causing the ANTLR
tool to report failure back to the invoking command-line shell.

There are also some extended options that are useful mainly for debugging
ANTLR itself.

-XdbgST
For those building a code generation target, this option brings up a window
showing the generated code and the templates used to generate that code.
It invokes the StringTemplate inspector window.

-Xforce-atn
ANTLR normally builds traditional “switch on token type” decisions where
possible (one token of lookahead is sufficient to distinguish between all
alternatives in a decision). To force even these simple decisions into the
adaptive LL(*) mechanism, use this option.

report erratum • discuss

ANTLR Tool Command-Line Options • 297

www.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

-Xlog
This option creates a log file containing lots of information messages from
ANTLR as it processes your grammar. If you would like to see how ANTLR
translates your left-recursive rules, turn on this option and look in the
resulting log file.

$ antlr4 -Xlog T.g4
wrote ./antlr-2012-09-06-17.56.19.log

Chapter 15. Grammar Reference • 298

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

APPENDIX 1

Bibliography
[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools . Addison-Wesley Longman, Reading, MA,
Second, 2006.

[Gro90] Josef Grosch. Efficient and Comfortable Error Recovery in Recursive
Descent Parsers. Structured Programming. 11[3]:129–140, 1990.

[Par09] Terence Parr. Language Implementation Patterns. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, 2009.

[Top82] Rodney W. Topor. A note on error recovery in recursive descent parsers.
SIGPLAN Notices. 17[2]:37–40, 1982.

[Wir78] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice Hall,
Englewood Cliffs, NJ, 1978.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/tpantlr2/errata/add
http://forums.pragprog.com/forums/tpantlr2
http://www.it-ebooks.info/

Index
SYMBOLS
(label), 39, 118, 261

$x.y, 178

* (subrule operator), 62, 266

*?, 266

+ (subrule operator), 62, 266

+= (label operator), 183

+?, 266

-> operator, 281

. (wildcard operator), 76, 279

.. (range), 278

= (label operator), 263–264

? (nongreedy suffix), 266

? (subrule operator), 63, 266

??, 266

{…} (action), 255, 265, 279

{…}? (semantic predicate),
189, 265, 279

| (or), 64, 261

~ (not), 91, 265, 279

A
AbstractParseTreeVisitor, 119

actions, see also predicates
defined, 271
embedded in grammar

rules, 46–48, 178–180,
255–256

embedded in lexer rules,
185–188

named actions, 176–178,
259–260, 269

after action, 184, 269

Algorithms + Data Structures
= Programs (Wirth), 158

aliases
run ANTLR, 5
run TestRig, 6

ALL(*)
vs. LL(*), xiii–xiv
vs. SLL(*), 158, 243

ambiguity, 13–15, 74, 157–
158, 196–201

annotating parse trees, 121–
125, 131–134, 142–144

ANTLR
altering code generation,

246
altering parsing strategy,

243
class names, 16–17, 236–

246
command-line options,

294–298
error handling, 37–38,

149–153, 242
files generated, 23
grammar lexicon, 253–

256
grammar structure, 256–

260
help message, 294
input file limits, 243
installing, 3–5
library packages, 235–

236
meta-language, 10, 67,

253–294
reserved words, 256
running, 5–6
runtime library, 22, 235–

246

ANTLRErrorListener, 153, 242

ANTLRErrorStrategy, 171, 174,
242

applications
calculator, 32–42, 117–

126, 176–182
call graph generator,

134–138
CSV data loader, 127–

130
Cymbol validator, 138–

145
decoupling from gram-

mars, 110–112
integrating parsers into

Java, 26–27
interactive, 181–182
Java array initializer, 27–

30
Java interface generator,

42–46
JSON to XML translator,

130–134

assoc token option, 70, 105,
293

associativity, 70, 105, 249

-atn option, 295

attributes
references to, 178
of rules, 268–270, 273–

277
of tokens, 271–273

B
\b (backspace), 255

backtracking, xiv

BNF (Backus-Naur Form), 58
vs. EBNF, 89

Boolean not
in ANTLR rules, 265, 279
in expression syntax, 100

www.it-ebooks.info

http://www.it-ebooks.info/

C
C, ambiguities in, 15

C++, ambiguities in, 197–
201, 211

call graphs, 134–138

channel attribute, 273

channel command, 53–54,
205, 282

character set notation, 74,
91, 278

CharStream, 239

Clarke, Keith, 247

CLASSPATH environment vari-
able, 4

code examples, downloading,
31

comma-separated values
(CSV), 84–86

data loader, 127–130

command-line options
ANTLR, 294–298
TestRig, 8

command-line shell, 3

comments
in ANTLR grammars, 253
block, 73
in input streams, 76–78,

204–208

Compilers: Principles, Tech-
niques and Tools, 250

context objects, 17

ctx attribute, 274

Cymbol language
call graph generator,

134–138
grammar for, 98–101
validator application,

138–145

D
-D option, 297

DefaultErrorStrategy, 171–174

-depend option, 297

DOT language
in call graph generator,

135–138
grammar for, 93–98
language guide, 93

dynamic scoping, 274–277

E
EBNF (Extended Backus-

Naur Form), subrules, 89,
265–266, 279

Efficient and Comfortable Er-
ror Recovery in Recursive
Descent Parsers (Grosch),
158

-encoding option, 255, 295

end-of-file character, 25

EOF token, 271

error handling, 37–38, 149–
153, 266, see also excep-
tions

altering error messages,
153–158

altering strategies, 171–
174

ambiguous input, 157–
158

automatic recovery, 158–
170

error alternatives in
rules, 170

error listeners, 154–158,
242

errors in looping sub-
rules, 163–166

fail-safe, 168–170
failed semantic predi-

cates, 166–168
lexical errors, 153
redirecting error mes-

sages, 155
resynchronization, 159–

166
single-token deletion,

152, 162, 164
single-token insertion,

152, 162–163

escape sequences
in ANTLR, 255
in input streams, 76, 85,

96

event methods
and labeling rule alterna-

tives, 117–118, 128,
131, 136

defined, 109
sharing information

among, 119–126

exceptions
alter handling of, 267
try/catch/finally statement,

266–267

F
\f (form feed), 255

FailedPredicateException, 268

files
book example source, 31
generated by ANTLR, 23
grammar file location,

260
grammar file names, 256
input file buffering, 238–

239, 243–244

following sets, 159–161
vs. FOLLOW sets, 161

forward references, 142, 201

fragment rules, 75, 91, 277

G
grammar modules, 36–37

grammars, see also parsers
ambiguities in, 13–15,

74, 157–158, 197–201
ANTLR meta-language,

67, 253–294
decoupling from Java,

112–115
decoupling from applica-

tion code, 109–112
defined, 10
designing, 57–81
embedded actions, 46–

48, 175, 178–180, 255–
256

formal, 60–61
importing, 36–37, 257–

259
island, 50–52, 219–224
lexer rules vs. parser

rules, 79–82
local variables in, 182–

183
named actions, 259–260
options, 292–293
rule inheritance, 257–258
testing, 34–36
tokens section, 259

Graphviz, 94–95

greediness, 76, 85, 283–286

Grosch, Josef, 158

H
header action, 177, 186, 259

HTML strings (DOT), 97

Index • 302

www.it-ebooks.info

http://www.it-ebooks.info/

I
identifiers

in ANTLR grammars, 254
lexer rules for, 74

import statement, 36–37, 257–
259

index attribute, 273

init action, 184, 269

input stream buffering, 238–
239, 243–246

InputMismatchException, 268

int attribute, 273

interpreters, 9

island grammars, 50–52,
219–224

J
Java

CLASSPATH, 5
produce interface from

class methods, 42–46
recognizing multiple di-

alects, 190–196
required for ANTLR, 3

Java Swing, 155

Javadoc-style comments, 253

JSON
grammar for, 86–93
JSON to XML translator,

130–134

K
keywords

as identifiers, 209–211
case-insensitive, 96
reserved words in ANTLR,

256

L
language applications,

see applications

Language Implementation
Patterns (Parr), 141

language option, 292

language patterns, 57, 68
choice, 63–64
nested phrase, 65–67
sequence, 62–63
token dependency, 64–65

languages, see also grammars
defined, 9
deriving grammars from

samples, 58–60

dialects, recognizing,
190–196

formal grammars, 60–61

left-recursive rules, 34, 71–
72, 279

ANTLR transformation of,
249–251

LexerNoViableAltException, 268

lexers, see also rules; tokens
defined, 10
elements of lexer rules,

278–279
handbuilt, with ANTLR

parser, 236–238
keywords as identifiers,

209–211
lexer commands, 281–

282
lexer rules vs. parser

rules, 79–82
lexer-only grammars, 257
maximal munch ambigui-

ty, 211–213
predicates in, 193–196,

216–217, 290–291

lexical ambiguities, 15
context sensitivity, 15,

74, 196–201, 208–218
parser warnings, 157–

158

lexical analysis, 10

lexical modes, 50, 221–222,
227–230, 278

lexical structures, common,
72–79

-lib option, 295

line attribute, 272

list of maps, 127

-listener option, 296

listener design pattern, 17–18

literals, 255, 280

local variables, 182–183

lookahead, 13, 209

M
members action, 177, 259–260

-message-format option, 296

mode command, 222, 282

more command, 281

N
\n (newline), 255

negation operator, see unary
operators

newlines
in Python, 77, 214–218
Unix vs. Windows, 103

-no-listener option, 120, 296

-no-visitor option, 296

nongreedy subrules, 76, 85,
283–286

Norvell, Theodore, 247

A Note on Error Recovery in
Recursive Descent Parsers
(Topor), 158

NoViableAltException, 268

numbers, lexer rules for, 75,
92

Nygaard, Kristen, 152

O
-o option, 295

operator precedence, 69–72,
104

operator precedence parsing,
71, 250

P
-package option, 296

parse trees
annotating, 121–125,

131–134, 142–144
classes, 241–242
data structures, 16–17
defined, 11
displaying in TestRig, 7,

25–26
walking methods, 17–20,

109–110, 112–116

parse-tree listeners, 18, 27–
29, 42–46, 112–115

adding a stack field, 120–
121

annotating parse trees,
121–125, 131–134,
142–144

defined, 109
vs. visitors, 109

parse-tree visitors, 19, 38–
42, 115–116

adding return values,
119–120

vs. listeners, 109

parsers, see also error han-
dling; rules

and predicated decisions,
286–290

defined, 10
embedded actions, 46–

48, 110–112

Index • 303

www.it-ebooks.info

http://www.it-ebooks.info/

integrating into Java, 26–
27

lexer rules vs. parser
rules, 79–82

lookahead in, 13
maximizing speed, 243
parser feedback to lexer,

209
parser-only grammars,

257
recursive-descent, 11–13
testing, 24–26

ParseTreeListener, 114

ParseTreeProperty, 123

ParseTreeVisitor, 115

ParseTreeWalker, 112, 130

parsing decisions, 13

popMode command, 228, 282

pos attribute, 273

precedence, 69–72, 104

precedence climbing parsing,
71, 249–251

predicates, see also semantic
predicates

and parsing decisions,
286–290

context-dependent, 289–
290

in lexers, 193–196, 216–
217, 290–291

visible, 288–289

predictions, 13

punctuation, lexer rules for,
78

pushMode command, 228, 282

Python
and newlines, 77, 214–

218
and whitespace, 77

R
\r (carriage return), 255

R language
grammar for, 102–107
language definition, 102

RecognitionException, 267

recognizers
classes, 236
data flow, 10
stages, 10
testing, 6–8

recursion, see left-recursive
rules; right-recursive rules

recursion, indirect, 89

recursive-descent parsers,
11–13

regular expressions vs.
ANTLR grammars, 24

reserved words in ANTLR, 256

resynchronization, 159–166
fail-safe mechanism,

168–170

right-recursive rules, 71

Ruby, ambiguities in, 196

rule context objects, 179, 263

rules
adding return values,

122, 178–180
ANTLR core notation, 67
attributes, defining, 268–

270
attributes, dynamically

scoped, 274–277
attributes, read-only,

273–274
consuming all input, 271
error alternatives in, 170
exception handling for,

266
labeling alternatives, 39,

118, 128, 131, 136,
261–262

labels, 180, 263–264
left-recursive, 34, 71–72,

247–251, 279
lexer, 277–282
lexer vs. parser, 79–82
naming, in ANTLR, 254
options, 293
parameter passing to,

183
parser, 261–271
recursion and nested

phrases, 66–67
recursion and nested to-

kens, 279
right-recursive, 71
start rule, 270
subrules, 76, 265–266,

279, 283–286
tail recursion, 89

S
scripts, 5

semantic predicates, 48–49,
286–290

and Java dialects, 190–
196

defined, 189
fail option, 167, 293
failing, 166–168

set notation, 74, 91, 278

Shah, Ajay, 102

skip command, 34, 281

start attribute, 274

start rule, 270

stop attribute, 274

string literals, lexer rules for,
75–76

StringTemplate engine, 4

subrules, 265–266, 279
nongreedy, 76, 85, 283–

286

superClass option, 292

symbol tables, 140–141

syntax, 10

syntax analyzers, see parsers

syntax trees, see parse trees

syntaxError() method, 153–155

T
\t (tab), 255

tail recursion, 89

TestRig, 6–8
alias to run, 6
command-line options, 8
-diagnostics option, 157
-gui option, 25–26
-tokens option, 24–25
-tree option, 25

text attribute (rule), 274

text attribute (token), 272

token channels, 53–54, 282
accessing, 206–208
filling, 204–206

token factories, 239–241, 244

tokenVocab option, 223, 292

tokenizers, see lexers

TokenLabelType option, 293

tokens
attributes, 271–273
deactivating with predi-

cates, 193–196
defined, 10
matching counterparts,

64–65
maximal munch ambigui-

ty, 211–213
naming, in ANTLR, 254
nested, and recursion,

279
options, 293
rewriting, 53, 206–208
stream buffering, 238–

239, 243–246

Index • 304

www.it-ebooks.info

http://www.it-ebooks.info/

TokenStream, 239

TokenStreamRewriter, 53, 206–
208

top-down parsing, 12

Topor, Rodney, 158

translators
defined, 9
Java array initializer, 27–

30
Java interface generator,

42–46
JSON to XML, 130–134

try/catch/finally, 266–267

type attribute, 272

type command, 282

U
unary operators

Boolean not, 100
minus, 100–101, 250
prefix and suffix, 248–

249

unbuffered streams, 243–246

UnbufferedCharStream, 239

UnbufferedTokenStream, 239

Unicode support
in ANTLR literals, 74, 255
in ANTLR names, 254–

255

Unix
ANTLR installation, 4
end-of-file character, 25
newlines, 103

V
-visitor option, 115, 296

visitor design pattern, 19

W
-Werror option, 297

whitespace
in input streams, 53, 76–

78, 92, 204–208
in Python, 77, 214–218

wildcard operator, 76, 279

Windows
ANTLR installation, 4–5
end-of-file character, 25
newlines, 103

Wirth, Niklaus, 152, 158

X
-XdbgST, 297

-Xforce-atn option, 297

-Xlog option, 298

XML
grammar for, 50–52
JSON to XML translator,

130–134
recognizer for, 224–231
W3C language definition,

224

Index • 305

www.it-ebooks.info

http://www.it-ebooks.info/

Long live the command line!
Use tmux for incredible mouse-free productivity, and learn how to create professional
command-line apps.

Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $11.00
http://pragprog.com/book/bhtmux

Speak directly to your system. With its simple com-
mands, flags, and parameters, a well-formed command-
line application is the quickest way to automate a
backup, a build, or a deployment and simplify your
life.

David Bryant Copeland
(200 pages) ISBN: 9781934356913. $33
http://pragprog.com/book/dccar

www.it-ebooks.info

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dccar
http://www.it-ebooks.info/

Welcome to the New Web
You need a better JavaScript and better recipes that professional web developers use every
day. Start here.

CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more
succinct syntax. In the first book on this exciting new
language, CoffeeScript guru Trevor Burnham shows
you how to hold onto all the power and flexibility of
JavaScript while writing clearer, cleaner, and safer
code.

Trevor Burnham
(160 pages) ISBN: 9781934356784. $29
http://pragprog.com/book/tbcoffee

Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin
(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/book/wbdev

www.it-ebooks.info

http://pragprog.com/book/tbcoffee
http://pragprog.com/book/wbdev
http://www.it-ebooks.info/

Seven Databases, Seven Languages
There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond a basic tutorial to explore the
essential concepts at the core of each technology.

Eric Redmond and Jim Wilson
(330 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(328 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

www.it-ebooks.info

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang
http://www.it-ebooks.info/

Pragmatic Guide Series
Get started quickly, with a minimum of fuss and hand-holding. The Pragmatic Guide Series
features convenient, task-oriented two-page spreads. You’ll find what you need fast, and
get on with your work.

Need to learn how to wrap your head around Git, but
don’t need a lot of hand holding? Grab this book if
you’re new to Git, not to the world of programming.
Git tasks displayed on two-page spreads provide all
the context you need, without the extra fluff.

Travis Swicegood
(160 pages) ISBN: 9781934356722. $25
http://pragprog.com/book/pg_git

JavaScript is everywhere. It’s a key component of to-
day’s Web—a powerful, dynamic language with a rich
ecosystem of professional-grade development tools,
infrastructures, frameworks, and toolkits. This book
will get you up to speed quickly and painlessly with
the 35 key JavaScript tasks you need to know.

Christophe Porteneuve
(160 pages) ISBN: 9781934356678. $25
http://pragprog.com/book/pg_js

www.it-ebooks.info

http://pragprog.com/book/pg_git
http://pragprog.com/book/pg_js
http://www.it-ebooks.info/

Career++
Ready to kick your career up to the next level? Start by growing a significant online presence,
and then reinvigorate your job itself.

Technical Blogging is the first book to specifically teach
programmers, technical people, and technically-orient-
ed entrepreneurs how to become successful bloggers.
There is no magic to successful blogging; with this
book you’ll learn the techniques to attract and keep a
large audience of loyal, regular readers and leverage
this popularity to achieve your goals.

Antonio Cangiano
(304 pages) ISBN: 9781934356883. $33
http://pragprog.com/book/actb

You’re already a great coder, but awesome coding chops
aren’t always enough to get you through your toughest
projects. You need these 50+ nuggets of wisdom. Vet-
eran programmers: reinvigorate your passion for devel-
oping web applications. New programmers: here’s the
guidance you need to get started. With this book, you’ll
think about your job in new and enlightened ways.

Ka Wai Cheung
(250 pages) ISBN: 9781934356791. $29
http://pragprog.com/book/kcdc

www.it-ebooks.info

http://pragprog.com/book/actb
http://pragprog.com/book/kcdc
http://www.it-ebooks.info/

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

The best agile book isn’t a book: Agile in a Flash is a
unique deck of index cards that fit neatly in your
pocket. You can tape them to the wall. Spread them
out on your project table. Get stains on them over
lunch. These cards are meant to be used, not just read.

Jeff Langr and Tim Ottinger
(110 pages) ISBN: 9781934356715. $15
http://pragprog.com/book/olag

You know the Agile and Lean development buzzwords,
you’ve read the books. But when systems need a seri-
ous overhaul, you need to see how it works in real life,
with real situations and people. Lean from the Trenches
is all about actual practice. Every key point is illustrat-
ed with a photo or diagram, and anecdotes bring you
inside the project as you discover why and how one
organization modernized its workplace in record time.

Henrik Kniberg
(176 pages) ISBN: 9781934356852. $30
http://pragprog.com/book/hklean

www.it-ebooks.info

http://pragprog.com/book/olag
http://pragprog.com/book/hklean
http://www.it-ebooks.info/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/tpantlr2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/tpantlr2

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

www.it-ebooks.info

http://pragprog.com/book/tpantlr2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/tpantlr2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Acknowledgments
	Welcome Aboard!
	Who Is This Book For?
	What's So Cool About ANTLR V4?
	What's in This Book?
	Learning More About ANTLR Online

	Part I—Introducing ANTLR and Computer Languages
	1. Meet ANTLR
	Installing ANTLR
	Executing ANTLR and Testing Recognizers

	2. The Big Picture
	Let's Get Meta!
	Implementing Parsers
	You Can't Put Too Much Water into a Nuclear Reactor
	Building Language Applications Using Parse Trees
	Parse-Tree Listeners and Visitors

	3. A Starter ANTLR Project
	The ANTLR Tool, Runtime, and Generated Code
	Testing the Generated Parser
	Integrating a Generated Parser into a Java Program
	Building a Language Application

	4. A Quick Tour
	Matching an Arithmetic Expression Language
	Building a Calculator Using a Visitor
	Building a Translator with a Listener
	Making Things Happen During the Parse
	Cool Lexical Features

	Part II—Developing Language Applications with ANTLR Grammars
	5. Designing Grammars
	Deriving Grammars from Language Samples
	Using Existing Grammars as a Guide
	Recognizing Common Language Patterns with ANTLR Grammars
	Dealing with Precedence, Left Recursion, and Associativity
	Recognizing Common Lexical Structures
	Drawing the Line Between Lexer and Parser

	6. Exploring Some Real Grammars
	Parsing Comma-Separated Values
	Parsing JSON
	Parsing DOT
	Parsing Cymbol
	Parsing R

	7. Decoupling Grammars from Application-Specific Code
	Evolving from Embedded Actions to Listeners
	Implementing Applications with Parse-Tree Listeners
	Implementing Applications with Visitors
	Labeling Rule Alternatives for Precise Event Methods
	Sharing Information Among Event Methods

	8. Building Some Real Language Applications
	Loading CSV Data
	Translating JSON to XML
	Generating a Call Graph
	Validating Program Symbol Usage

	Part III—Advanced Topics
	9. Error Reporting and Recovery
	A Parade of Errors
	Altering and Redirecting ANTLR Error Messages
	Automatic Error Recovery Strategy
	Error Alternatives
	Altering ANTLR's Error Handling Strategy

	10. Attributes and Actions
	Building a Calculator with Grammar Actions
	Accessing Token and Rule Attributes
	Recognizing Languages Whose Keywords Aren't Fixed

	11. Altering the Parse with Semantic Predicates
	Recognizing Multiple Language Dialects
	Deactivating Tokens
	Recognizing Ambiguous Phrases

	12. Wielding Lexical Black Magic
	Broadcasting Tokens on Different Channels
	Context-Sensitive Lexical Problems
	Islands in the Stream
	Parsing and Lexing XML

	Part IV—ANTLR Reference
	13. Exploring the Runtime API
	Library Package Overview
	Recognizers
	Input Streams of Characters and Tokens
	Tokens and Token Factories
	Parse Trees
	Error Listeners and Strategies
	Maximizing Parser Speed
	Unbuffered Character and Token Streams
	Altering ANTLR's Code Generation

	14. Removing Direct Left Recursion
	Direct Left-Recursive Alternative Patterns
	Left-Recursive Rule Transformations

	15. Grammar Reference
	Grammar Lexicon
	Grammar Structure
	Parser Rules
	Actions and Attributes
	Lexer Rules
	Wildcard Operator and Nongreedy Subrules
	Semantic Predicates
	Options
	ANTLR Tool Command-Line Options

	A1. Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –

